Desarrollo de proyectos de IoT que implementen ML/IA en sistemas empotrados
Loading...
Official URL
Full text at PDC
Publication date
2025
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este TFG presenta una implementación de un sistema IoT empotrado para la detección del llanto de un bebé, empleando técnicas de aprendizaje automático mediante redes neuronales desplegadas en la placa ESP32-S3-Box 3. La solución incluye la adquisición de audio en tiempo real, la extracción de características acústicas empleando coeficientes cepstrales en la escala Mel (MFCCs) y la clasificación mediante redes neuronales (con arquitecturas de perceptrón multicapa y red convolucional). Asimismo, se desarrolla una arquitectura modular de software basada en callbacks que hace uso de un servidor MQTT para transmitir resultados. Paralelamente, se realiza un estudio comparativo de los métodos para desplegar redes neuronales en sistemas empotrados, enfocado en los beneficios y restricciones que ofrecen las arquitecturas utilizadas, la profundidad de las redes, la cuantización de los modelos y los métodos de preprocesado de audio. Los resultados experimentales permiten establecer recomendaciones prácticas para el despliegue de soluciones AIoT en aplicaciones de monitoreo infantil con recursos computacionales limitados.
This TFG presents an embedded IoT system for detecting a baby’s cry using machine learning techniques with neural networks deployed on the ESP32-S3-Box 3 board. The solution includes realtime audio acquisition, acoustic feature extraction via Mel-frequency cepstral coefficients (MFCCs), and classification using multilayer perceptron and convolutional neural network architectures. A modular, callback-based software framework has been developed to publish results via an MQTT server. In parallel, a comparative study evaluates different deployment methods for neural networks on embedded platforms, examining the benefits and limitations of various architectures, network depths, model quantization schemes, and audio preprocessing techniques. Experimental results yield practical recommendations for deploying AIoT solutions in resource-constrained infant-monitoring applications.
This TFG presents an embedded IoT system for detecting a baby’s cry using machine learning techniques with neural networks deployed on the ESP32-S3-Box 3 board. The solution includes realtime audio acquisition, acoustic feature extraction via Mel-frequency cepstral coefficients (MFCCs), and classification using multilayer perceptron and convolutional neural network architectures. A modular, callback-based software framework has been developed to publish results via an MQTT server. In parallel, a comparative study evaluates different deployment methods for neural networks on embedded platforms, examining the benefits and limitations of various architectures, network depths, model quantization schemes, and audio preprocessing techniques. Experimental results yield practical recommendations for deploying AIoT solutions in resource-constrained infant-monitoring applications.













