Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On a nonlocal quasilinear parabolic model related to a current-carrying stellarator

Loading...
Thumbnail Image

Full text at PDC

Publication date

2002

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Ltd
Citations
Google Scholar

Citation

Abstract

An initial-boundary value problem for the nonlinear elliptic–parabolic equation (_(u))t −_u = G(u)(t, x)+J(u)(t, x) is considered. Here _(s) = min(s, 0) = −s−, G and J are nonlocal operators. This problem arises in the study of magnetic confinement of plasma in a stellarator device. An existence theorem of a weak solution defined in this paper is proved. In the course of the proof of the existence theorem with the help of the replacement of _(s) by __(s) = _s+ −s−, a family of regularized parabolic equations is constructed. It is established that the family of solutions of the regularized problems converges as _!0 to the solution of the original initial-boundary value problem. The solvability of the regularized problem with the help of Galerkin’s method is proved.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections