Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Enhancement of in vivo supraspinatus tendon–to-bone healing with an alginate-chitin scaffold and rhBMP-2

Citation

Arvinius C, Civantos A, Rodríguez-Bobada C, Rojo FJ, Pérez-Gallego D, Lopiz Y, Marco F. Enhancement of in vivo supraspinatus tendon-to-bone healing with an alginate-chitin scaffold and rhBMP-2. Injury. 2021 Jan;52(1):78-84. doi: 10.1016/j.injury.2020.11.019. Epub 2020 Nov 9. PMID: 33223258.

Abstract

Introduction: Rotator cuff disorders present a high retear rate despite advances in surgical treatment. Tissue engineering could therefore be interesting in order to try to enhance a more biological repair. RhBMP-2 is one of the most osteogenic growth factors and it also induces the formation of collagen type I. However, it has a short half-life and in order to get a more stable release over time it could be integrated in a more slowly degradable carrier, such as an alginate-chitin scaffold. The aim of this study was to investigate the role of the alginate-chitin scaffold alone and in combination with different concentrations of rhBMP-2 when applied on chronic rotator cuff lesions in a rat model. Materials and methods: We performed an experimental study with 80 Sprague-Dawley rats, 8 months old, with a chronic rupture of the supraspinatus tendon that was repaired with a modified Mason Allen suture. A scaffold was applied over the suture and 4 groups were obtained; suture (S) only suture, double control (DC) alginate and chitin scaffold, single sample (SS) scaffold of alginate with rhBMP-2 (20 µg rhBMP-2) and chitin, double sample (DS) a scaffold containing alginate with rhBMP-2 and chitin with rhBMP-2 (40 µg rhBMP-2). Macroscopic, histological and biomechanical studies were performed at 4 months after reparation. Results: The modified Åström and Rausing's histological scale (the higher the score the worse outcome, 0 points=native tendon) was applied: S got 52 points compared to DC 30 (p = 0,034), SS 22 (p = 0,009) and DS 16 (p = 0,010). Biomechanically the maximum load was highest in DC (63,05 N), followed by DS (61,60 N), SS (52,35 N) and S (51,08), p = 0,025 DS vs S. As to the elastic constant a higher value was obtained in DC (16,65), DS (12,55) and SS (12,20) compared to S (9,33), p = 0,009 DC vs S and 0,034 DS vs S. Conclusions: The alginate-chitin scaffold seems to promote a more biological response after the reparation of a chronic rotator cuff lesion. Its effect is further enhanced by the addition of rhBMP-2 since the osteotendinous junction is more native-like and has better biomechanical properties.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections