Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the existence of a free-boundary for a class of reaction-diffusion systems

Loading...
Thumbnail Image

Full text at PDC

Publication date

1984

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Society for Industrial and Applied Mathematics
Citations
Google Scholar

Citation

Abstract

Let Ω⊂R N be a bounded smooth domain, f,g∈C 1 (R) , φ 1 ,φ 2 ∈C 2 (∂Ω) , b,c∈C 2 (R) nondecreasing, α,β:R→2 R maximal monotone such that 0∈α(0)∩β(0) and consider the weakly coupled elliptic system (∗) Δu∈α(u)f(v) , −Δv∈β(u)g(v) on Ω with Dirichlet-boundary conditions u=φ 1 , v=φ 2 on ∂Ω , or with the nonlinear boundary conditions ∂u/∂n+b(u)=φ 1 , ∂v/∂n+c(v)=φ 2 on ∂Ω . Systems of this type arise in several applications, in particular as models for certain chemical reactions; here one typically has α(u)=β(u)=|u| q sgnu , where q≥0 is the order of the reaction. Assuming 0≤m 1 ≤f(s) , 0≤g(s)≤m 2 and α(s)≠∅≠β(s) on R , the authors construct pairs of bounded sub/supersolutions of (∗) and then prove, by a standard application of Schauder's theorem, existence of a solution (u,v) of (∗) with either boundary condition satisfying u,v∈W 1,p (Ω) for each p∈[1,∞) . The second part of the paper is devoted to existence of a so-called "dead core'' for u , i.e., the set Ω 0 =u −1 (0) is of positive Lebesgue measure. For α(u)=μ 2 |u| q sgnu it is shown that a dead core only exists if 0≤q<1 holds; in this case the dead core is proved to exist for μ large and estimates for the measure of Ω 0 are derived by means of comparison techniques.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections