On the existence of a free-boundary for a class of reaction-diffusion systems
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Hernández, Jesús | |
dc.date.accessioned | 2023-06-21T02:02:19Z | |
dc.date.available | 2023-06-21T02:02:19Z | |
dc.date.issued | 1984 | |
dc.description.abstract | Let Ω⊂R N be a bounded smooth domain, f,g∈C 1 (R) , φ 1 ,φ 2 ∈C 2 (∂Ω) , b,c∈C 2 (R) nondecreasing, α,β:R→2 R maximal monotone such that 0∈α(0)∩β(0) and consider the weakly coupled elliptic system (∗) Δu∈α(u)f(v) , −Δv∈β(u)g(v) on Ω with Dirichlet-boundary conditions u=φ 1 , v=φ 2 on ∂Ω , or with the nonlinear boundary conditions ∂u/∂n+b(u)=φ 1 , ∂v/∂n+c(v)=φ 2 on ∂Ω . Systems of this type arise in several applications, in particular as models for certain chemical reactions; here one typically has α(u)=β(u)=|u| q sgnu , where q≥0 is the order of the reaction. Assuming 0≤m 1 ≤f(s) , 0≤g(s)≤m 2 and α(s)≠∅≠β(s) on R , the authors construct pairs of bounded sub/supersolutions of (∗) and then prove, by a standard application of Schauder's theorem, existence of a solution (u,v) of (∗) with either boundary condition satisfying u,v∈W 1,p (Ω) for each p∈[1,∞) . The second part of the paper is devoted to existence of a so-called "dead core'' for u , i.e., the set Ω 0 =u −1 (0) is of positive Lebesgue measure. For α(u)=μ 2 |u| q sgnu it is shown that a dead core only exists if 0≤q<1 holds; in this case the dead core is proved to exist for μ large and estimates for the measure of Ω 0 are derived by means of comparison techniques. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16418 | |
dc.identifier.doi | 10.1137/0515052 | |
dc.identifier.issn | 0036-1410 | |
dc.identifier.officialurl | http://epubs.siam.org/simax/resource/1/sjmaah/v15/i4/p670_s1?isAuthorized=no | |
dc.identifier.relatedurl | http://epubs.siam.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64668 | |
dc.issue.number | 4 | |
dc.journal.title | Siam Journal on Mathematical Analysis | |
dc.page.final | 685 | |
dc.page.initial | 670 | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.954 | |
dc.subject.keyword | dead core set | |
dc.subject.keyword | chemical reactions | |
dc.subject.keyword | discontinuous nonlinearity | |
dc.subject.keyword | nonlinear stationary reaction-diffusion systems | |
dc.subject.keyword | existence | |
dc.subject.keyword | Dirichlet | |
dc.subject.keyword | nonlinear boundary conditions | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | On the existence of a free-boundary for a class of reaction-diffusion systems | |
dc.type | journal article | |
dc.volume.number | 15 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |