Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strong spin-dependent negative differential resistance in composite graphene superlattices

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We find clear signatures of spin-dependent negative differential resistance in compound systems comprising a graphene nanoribbon and a set of ferromagnetic insulator strips deposited on top of it. The periodic array of ferromagnetic strips induces a proximity exchange splitting of the electronic states in graphene, resulting in the appearance of a superlattice with a spin-dependent energy spectrum. The electric current through the device can be highly polarized and both the current and its polarization manifest nonmonotonic dependence on the bias voltage. The device operates therefore as an Esaki spin diode, which opens possibilities to design new spintronic circuits.

Research Projects

Organizational Units

Journal Issue

Description

© 2013 American Physical Society. Work in Madrid was supported by the MICINN (Project No. MAT2010-17180). Research of C.G. was supported by the PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM). P.A.O. acknowledges financial support from the FONDECYT (Grant No. 1100560).

Unesco subjects

Keywords

Collections