Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strong spin-dependent negative differential resistance in composite graphene superlattices

dc.contributor.authorMunarriz, J.
dc.contributor.authorGaul, Christopher
dc.contributor.authorMalyshev, Andrey
dc.contributor.authorOrellana, P. A.
dc.contributor.authorMueller, C. A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-19T13:26:09Z
dc.date.available2023-06-19T13:26:09Z
dc.date.issued2013-10
dc.description© 2013 American Physical Society. Work in Madrid was supported by the MICINN (Project No. MAT2010-17180). Research of C.G. was supported by the PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM). P.A.O. acknowledges financial support from the FONDECYT (Grant No. 1100560).
dc.description.abstractWe find clear signatures of spin-dependent negative differential resistance in compound systems comprising a graphene nanoribbon and a set of ferromagnetic insulator strips deposited on top of it. The periodic array of ferromagnetic strips induces a proximity exchange splitting of the electronic states in graphene, resulting in the appearance of a superlattice with a spin-dependent energy spectrum. The electric current through the device can be highly polarized and both the current and its polarization manifest nonmonotonic dependence on the bias voltage. The device operates therefore as an Esaki spin diode, which opens possibilities to design new spintronic circuits.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipMoncloa Campus of International Excellence (UCM-UPM)
dc.description.sponsorshipFONDECYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27162
dc.identifier.doi10.1103/PhysRevB.88.155423
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.88.155423
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33682
dc.issue.number15
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2010-17180
dc.relation.projectID1100560
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordTransport
dc.subject.keywordDevices
dc.subject.ucmFísica de materiales
dc.titleStrong spin-dependent negative differential resistance in composite graphene superlattices
dc.typejournal article
dc.volume.number88
dcterms.references1. L. Esaki, Phys. Rev. 109, 603 (1958). 2. L. Esaki, Rev. Mod. Phys. 46, 237 (1974). 3. S. Sze and K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 2006). 4. A. V. Malyshev, Phys. Rev. Lett. 98, 096801 (2007). 5. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973). 6. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990). 7. F. Léonard and J. Tersoff, Phys. Rev. Lett. 85, 4767 (2000). 8. P. Bedrossian, D. M. Chen, K. Mortensen, and J. A. Golovchenko, Nature (London) 342, 258 (1989). 9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 10. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 11. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007). 12. W. Han, J.-R. Chen, D. Wang, K. M. McCreary, H. Wen, A. G. Swartz, J. Shi, and R. K. Kawakami, Nano Lett. 12, 3443 (2012). 13. P. J. Zomer, M. H. D. Guimaraes, N. Tombros, and B. J. van Wees, Phys. Rev. B 86, 161416 (2012). 14. M. B. Lundeberg, R. Yang, J. Renard, and J. A. Folk, Phys. Rev. Lett. 110, 156601 (2013). 15. A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, Phys. Rep. 503, 77 (2011). 16. J. Munarriz, F. Domínguez-Adame, P. A. Orellana, and A. V. Malyshev, Nanotechnology 23, 205202 (2012). 17. K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, New J. Phys. 11, 095016 (2009). 18. T.-T. Wu, X.-F. Wang, M.-X. Zhai, H. Liu, L. Zhou, and Y.-J. Jiang, Appl. Phys. Lett. 100, 052112 (2012). 19. H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406 (2008). 20. X.-X. Yu, Y.-E. Xie, Y. T. Ou, and Y.-P. Chen, Chin. Phys. B 21, 107202 (2012). 21. Z. P. Niu, F. X. Li, B. G. Wang, L. Sheng, and D. Y. Xing, Eur. Phys. J. B 66, 245 (2008). 22. E. Faizabadi, M. Esmaeilzadeh, and F. Sattari, Eur. Phys. J. B 85, 198 (2012). 23. G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, Phys. Rev. B 84, 125453 (2011). 24. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007). 25. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006). 26. J. Munarriz, F. Domínguez-Adame, and A. V. Malyshev, Nanotechnology 22, 365201 (2011). 27. D. F. Förster, Ph.D. thesis, Universität zu Köln, (2011). 28. A. G. Swartz, P. M. Odenthal, Y. Hao, R. S. Ruoff, and R. K. Kawakami, ACS Nano 6, 10063 (2012). 29. J. Zou, G. Jin, and Y.-Q. Ma, J. Phys.: Condens. Matter 21, 126001 (2009). 30. Y. Gu, Y. H. Yang, J. Wang, and K. S. Chan, J. Appl. Phys. 105, 103711 (2009). 31. C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990). 32. D. Z.-Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45, 3583 (1992). 33. J. Schelter, D. Bohr, and B. Trauzettel, Phys. Rev. B 81, 195441 (2010). 34. P. R. Wallace, Phys. Rev. 71, 622 (1947). 35. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 36. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006). 37. M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010). 38. Q. Zhao, J. Gong, and C. A. Muller, ¨ Phys. Rev. B 85, 104201 (2012). 39. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
dspace.entity.typePublication
relation.isAuthorOfPublication3df963ba-ec00-405d-9b2a-9200d1b4148b
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame03libre.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format

Collections