Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An algorithm for panel ANOVA with grouped data

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg
Citations
Google Scholar

Citation

Abstract

In this paper, we present an algorithm suitable for analysing the variance of panel data when some observations are either given in grouped form or are missed. The analysis is carried out from the perspective of ANOVA panel data models with general errors. The classification intervals of the grouped observations may vary from one to another, thus the missing observations are in fact a particular case of grouping. The proposed Algorithm (1) estimates the parameters of the panel data models; (2) evaluates the covariance matrices of the asymptotic distribution of the time-dependent parameters assuming that the number of time periods, T, is fixed and the number of individuals, N, tends to infinity and similarly, of the individual parameters when T -> a and N is fixed; and, finally, (3) uses these asymptotic covariance matrix estimations to analyse the variance of the panel data.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections