Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An algorithm for panel ANOVA with grouped data

dc.contributor.authorAnido, Carmen
dc.contributor.authorRivero Rodríguez, Carlos
dc.contributor.authorValdés Sánchez, Teófilo
dc.date.accessioned2023-06-20T03:31:03Z
dc.date.available2023-06-20T03:31:03Z
dc.date.issued2011-07
dc.description.abstractIn this paper, we present an algorithm suitable for analysing the variance of panel data when some observations are either given in grouped form or are missed. The analysis is carried out from the perspective of ANOVA panel data models with general errors. The classification intervals of the grouped observations may vary from one to another, thus the missing observations are in fact a particular case of grouping. The proposed Algorithm (1) estimates the parameters of the panel data models; (2) evaluates the covariance matrices of the asymptotic distribution of the time-dependent parameters assuming that the number of time periods, T, is fixed and the number of individuals, N, tends to infinity and similarly, of the individual parameters when T -> a and N is fixed; and, finally, (3) uses these asymptotic covariance matrix estimations to analyse the variance of the panel data.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipEUROSTAT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20178
dc.identifier.doi10.1007/s00184-009-0291-y
dc.identifier.issn0026-1335
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs00184-009-0291-y
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43678
dc.issue.number1
dc.journal.titleMetrika
dc.language.isoeng
dc.page.final107
dc.page.initial85
dc.publisherSpringer Heidelberg
dc.relation.projectIDMTM2004-05776
dc.relation.projectID9.242.010
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordEM algorithm
dc.subject.keywordPanel data
dc.subject.keywordIterative estimation
dc.subject.keywordANOVA with grouped data
dc.subject.keywordConditional imputation
dc.subject.keywordAsymptotics
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAn algorithm for panel ANOVA with grouped data
dc.typejournal article
dc.volume.number74
dcterms.referencesAn MY (1998) Logconcavity versus logconvexity: a complete characterization. J Econ Theory 80:350–369 Baltagi BH (1995) Econometric analysis of panel data. Wiley, New York Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39(B):1–22 Healy MJR, Westmacott M (1956) Missing values in experiments analysed on automatic computers. Appl Stat 5:203–206 Hsiao C (2003) Analysis of panel data. Cambridge University Press, Cambridge Laha RG, Rohatgi VK (1979) Probability theory. Wiley, New York Lange K (1999) Numerical analysis for statistician. Springer, Berlin Little RJA, Rubin DB (1987) Statistical analysis with missing data. Wiley, New York Louis TA (1982) Finding observed information using the EM algorithm. J R Stat Soc 44(B):98–130 McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York Meilijson I (1989) A fast improvement of the EMalgorithm on its own terms. J R Stat Soc 51(B):127–138 Orchard T, Woodbury MA (1972) A missing information principle: theory and applications. In: Proceedings of the sixth berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 697–715 Meng XL, RubinDB (1991) Using EMto obtain asymptotic variance-covariance matrices. JAmStat Assoc 86:899–909 Tanner MA (1993) Tools for statistical inferenceMethods for the exploration of posterior distributions and likelihood functions. Springer, Berlin
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo02springer.pdf
Size:
712.38 KB
Format:
Adobe Portable Document Format

Collections