Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unified fusion system based on bayesian networks for autonomous mobile robots

dc.book.titleProceedings of the Fifth International Conference on Information Fusion
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-20T21:07:16Z
dc.date.available2023-06-20T21:07:16Z
dc.date.issued2002-12-31
dc.descriptionISF © 2002. International Conference on Information Fusion (Fusion 2002) (5º. 8-11 Jul, 2002. Annapolis, Maryland, EEUU)
dc.description.abstractA multisensor fusion system that is usedfor estimating the location of a robot and the state of the objects around is presented. The whole fusion system has been implemented as a Dynamic Bayesian Networks (DBN) with the purpose of having a homogenous and formalized way of capturing the dependencies that exist between the robot location, the state of the environment, and all the sensorial data. At this stage of the research it consists of two independent DBNs, one for estimating the robot location and another for building an occupancy probabilistic map of the environment, which are the basis of a unified fusion system. The dependencies of the variables and information in the two DBN will be captured by a unique DBN constructed by adding arcs (and nodes if necessary) between the two DBN. The DBN implemented so far can be used in robots with different sets of sensors.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22005
dc.identifier.isbn0-9721844-2-2
dc.identifier.officialurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1020900
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.relatedurlhttp://www.isif.org/fusion/proceedings/fusion02CD/pdffiles/papers/T3D02.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60732
dc.language.isoeng
dc.page.final880
dc.page.initial873
dc.publisherInt Soc Information Fusion
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordMultisensor Fusion System
dc.subject.keywordBayesian Networks
dc.subject.keywordAutonomous Mobile Robots
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleUnified fusion system based on bayesian networks for autonomous mobile robots
dc.typebook part
dc.volume.numberII
dcterms.references[l] RC. Luo & M.G. Kay. Multisensor Integration and Fusion for Intelligent Machines and Systems. Ablex Publishing, 1995. [2] M.A. Abidi, R.C. Gonzalez. The use of Multisensor Data for Robotic Application IEEE Transactions on Robotics and Automation, Vol. 6, No 2,1992. [3] W. Burger amd B. Bhanu. Qualitative motion understanding. Kluver Academic Publishers. Massachusetts 1992. [4] S. Thrun, W. Burgard, D. Fox. A probabilistic approach for concurrent mapping and localization for mobile robots. Machine Learning, 31:29-53, 1998. [5] Learning in Graphical Models. Ed. by Michael 1. Jordan. The MIT Press, Cambridge MassachW 1999. [6] Finn V. Jensen. An Introduction to Bayesian Networks. Springer-Verlag New York 1996 [7] P. lbarguengoytia, L.E. Sucar, S. Vadera. A Probabilistic Model for Sensor Validation. Proc. 12th Conference on Uncertainty in Artificial Intelligence, Portland, Morgan-Kaufmann, San Mateo, CA. 1996. [8] J.M. Regh, K.P. Murphy, P.W. Fieguth. Vision-Based Speaker Detection Using Bayeslan Networks. Computer Vision and Pattern Recognition (CVPR99), Ft Collins, CO, June 1999 [9] J. Sherrah, S. Gong. Tracking Discontinuous Motion using Bayesian Inference. Proc. of the 6th European Conference on Computer Vision. Dublin. 2000 [10] J.A. López-Orozco, J.M de la Cruz, J. Sanz , J. Flores. Multisensor Fusion Environment Measures Using Bayesian Networks. Proc. of the Int. Conf on Multisource-Multisensom Information Fusion. Las Vegas, USA. 1998. [11] K.P. Murphy. Bayesian Map Learning in Dynamic Environments. NIPS 99. Neural Info. Proc. Systems. 1999 [12] AE. Nicholson, JM. Brady. Qmamic Belief Networks for Discrete Monitoring. IEEE Trans. OIL System, Man and Cybernetics. Vol 24, NO 11, Noviembre 1994. [13] K.P. Murpy. Filtering and Smoothing in Linear Dynamical System using the Junction Tree Algorithm. Technical Report, CS-Berkeley [14] J.A. Lopez-Orozco, J.M. de la Cruz, E. Besada, P. Ruiperez. An Asynchronous, Robust and Distibutd Multisensor Fusion System for Mobile Robots. The International Joumal of Robotics Research. Vol 19, No. 10. October 2000. [15] A.G.O. Mutambara. Decenlralizd Estimation and Control fur Multisensor Systems. CRC Press 1998. [I6] J.A. López-Orozco, J.M. de la Cruz, E. Domínguez, E. Besada, 0.R Polo. An Open Sensing Architecture to Autonomous Mobile Robots. Proc. of the IEEE Int. Symp. on Computational Intelligence in Robotics and Automation (CIRA). ISCI/CIRA/ISAS Joint Conference. Gaithersburg, MD 1998.
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication26b95994-f79c-4d7c-8de5-a003d6d2a770
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
besadaportas09.pdf
Size:
565.59 KB
Format:
Adobe Portable Document Format