Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The vasodilator naftidrofuryl attenuates short-term brain glucose hypometabolism in the lithium-pilocarpine rat model of status epilepticus without providing neuroprotection

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

García-García, L., Gomez, F., Delgado, M., Fernández de la Rosa, R., & Pozo, M. Á. (2023). The vasodilator naftidrofuryl attenuates short-term brain glucose hypometabolism in the lithium-pilocarpine rat model of status epilepticus without providing neuroprotection. European journal of pharmacology, 939, 175453. https://doi.org/10.1016/j.ejphar.2022.175453

Abstract

Status epilepticus (SE) triggered by lithium-pilocarpine is a model of epileptogenesis widely used in rats, reproducing many of the pathological features of human temporal lobe epilepsy (TLE). After the SE, a silent period takes place that precedes the occurrence of recurrent spontaneous seizures. This latent stage is characterized by brain glucose hypometabolism and intense neuronal damage, especially at the hippocampus. Importantly, interictal hypometabolism in humans is a predictive marker of epileptogenesis, being correlated to the extent and severity of neuronal damage. Among the potential mechanisms underpinning glucose metabolism impairment and the subsequent brain damage, a reduction of cerebral blood flow has been proposed. Accordingly, our goal was to evaluate the potential beneficial effects of naftidrofuryl (25 mg/kg i.p., twice after the insult), a vasodilator drug currently used for circulatory insufficiency-related pathologies. Thus, we measured the effects of naftidrofuryl on the short-term brain hypometabolism and hippocampal damage induced by SE in rats. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) neuroimaging along with various neurohistochemical assays aimed to assess brain damage were performed. SE led to both severe glucose hypometabolism in key epilepsy-related areas and hippocampal neuronal damage. Although naftidrofuryl showed no anticonvulsant properties, it ameliorated the short-term brain hypometabolism induced by pilocarpine. Strikingly, the latter was neither accompanied by neuroprotective nor by anti-inflammatory effects. We suggest that naftidrofuryl, by acutely enhancing brain blood flow around the time of SE improves the brain metabolic state but this effect is not enough to protect from the damage induced by SE.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections