Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On the topology of global semianalytic sets

Loading...
Thumbnail Image

Full text at PDC

Publication date

1990

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Let M be a real analytic manifold and O(M) its ring of global analytic functions. Let Z be a global semianalytic set of M (that is, a subset of M of the form Z=⋃r i=0{x∈M:fi1 (x)>0,⋯,fis (x)>0, gi (x)=0}, where fij,gi∈O(M)). In this paper, the author proves the following three theorems. Theorem: If cl(Z)∖Z[resp. Z∖int(Z)] is relatively compact, then the closure cl(Z)[resp. int(Z)] of Z is also a global semianalytic set. Theorem: If Z is closed [resp. open] and Z∖int(Z)[resp. cl(Z)∖Z] is compact, then there are analytic functions fij∈O(M) such that Z=⋃r i=1{x∈M:fi1 (x)≥0,⋯,fis (x)≥0}[resp. Z=⋃r i=1{x∈M:fi1 (x)>0,⋯,fis(x)>0}]. Theorem: If cl(Z)∖Z is relatively compact, then the connected components of Z are also global semianalytic sets.

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the Conference held in Trento, Italy, October 3–7, 1988

Keywords