On the topology of global semianalytic sets
dc.book.title | Real Analytic and Algebraic Geometry | |
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.contributor.editor | Dold, A. | |
dc.contributor.editor | Eckmann, B. | |
dc.contributor.editor | Takens, F. | |
dc.date.accessioned | 2023-06-20T21:04:28Z | |
dc.date.available | 2023-06-20T21:04:28Z | |
dc.date.issued | 1990 | |
dc.description | Proceedings of the Conference held in Trento, Italy, October 3–7, 1988 | |
dc.description.abstract | Let M be a real analytic manifold and O(M) its ring of global analytic functions. Let Z be a global semianalytic set of M (that is, a subset of M of the form Z=⋃r i=0{x∈M:fi1 (x)>0,⋯,fis (x)>0, gi (x)=0}, where fij,gi∈O(M)). In this paper, the author proves the following three theorems. Theorem: If cl(Z)∖Z[resp. Z∖int(Z)] is relatively compact, then the closure cl(Z)[resp. int(Z)] of Z is also a global semianalytic set. Theorem: If Z is closed [resp. open] and Z∖int(Z)[resp. cl(Z)∖Z] is compact, then there are analytic functions fij∈O(M) such that Z=⋃r i=1{x∈M:fi1 (x)≥0,⋯,fis (x)≥0}[resp. Z=⋃r i=1{x∈M:fi1 (x)>0,⋯,fis(x)>0}]. Theorem: If cl(Z)∖Z is relatively compact, then the connected components of Z are also global semianalytic sets. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20321 | |
dc.identifier.doi | 10.1007/BFb0083924 | |
dc.identifier.isbn | 978-3-540-52313-0 | |
dc.identifier.officialurl | http://link.springer.com/chapter/10.1007/BFb0083924 | |
dc.identifier.relatedurl | http://www.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60624 | |
dc.issue.number | 1420 | |
dc.page.final | 246 | |
dc.page.initial | 237 | |
dc.page.total | 366 | |
dc.publication.place | Berlin | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Lecture Notes in Mathematics | |
dc.relation.projectID | 86PB0062 | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 515.171.5 | |
dc.subject.keyword | Global semianalytic sets | |
dc.subject.keyword | real spectrum | |
dc.subject.keyword | strict localization | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On the topology of global semianalytic sets | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |