Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

On the topology of global semianalytic sets

dc.book.titleReal Analytic and Algebraic Geometry
dc.contributor.authorRuiz Sancho, Jesús María
dc.contributor.editorDold, A.
dc.contributor.editorEckmann, B.
dc.contributor.editorTakens, F.
dc.date.accessioned2023-06-20T21:04:28Z
dc.date.available2023-06-20T21:04:28Z
dc.date.issued1990
dc.descriptionProceedings of the Conference held in Trento, Italy, October 3–7, 1988
dc.description.abstractLet M be a real analytic manifold and O(M) its ring of global analytic functions. Let Z be a global semianalytic set of M (that is, a subset of M of the form Z=⋃r i=0{x∈M:fi1 (x)>0,⋯,fis (x)>0, gi (x)=0}, where fij,gi∈O(M)). In this paper, the author proves the following three theorems. Theorem: If cl(Z)∖Z[resp. Z∖int(Z)] is relatively compact, then the closure cl(Z)[resp. int(Z)] of Z is also a global semianalytic set. Theorem: If Z is closed [resp. open] and Z∖int(Z)[resp. cl(Z)∖Z] is compact, then there are analytic functions fij∈O(M) such that Z=⋃r i=1{x∈M:fi1 (x)≥0,⋯,fis (x)≥0}[resp. Z=⋃r i=1{x∈M:fi1 (x)>0,⋯,fis(x)>0}]. Theorem: If cl(Z)∖Z is relatively compact, then the connected components of Z are also global semianalytic sets.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20321
dc.identifier.doi10.1007/BFb0083924
dc.identifier.isbn978-3-540-52313-0
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/BFb0083924
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60624
dc.issue.number1420
dc.page.final246
dc.page.initial237
dc.page.total366
dc.publication.placeBerlin
dc.publisherSpringer
dc.relation.ispartofseriesLecture Notes in Mathematics
dc.relation.projectID86PB0062
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.cdu515.171.5
dc.subject.keywordGlobal semianalytic sets
dc.subject.keywordreal spectrum
dc.subject.keywordstrict localization
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the topology of global semianalytic sets
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download