Blessing of dimensionality in spiking neural networks: the by-chance functional learning

dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorLobov, Sergey
dc.date.accessioned2026-01-14T13:29:54Z
dc.date.available2026-01-14T13:29:54Z
dc.date.issued2025
dc.description.abstractSpiking neural networks (SNNs) have significant potential for a power-efficient neuromorphic AI. However, their training is challenging since most of the learning principles known from artificial neural networks are hardly applicable. Recently, the concept of “blessing of dimensionality” has successfully been used to treat high-dimensional data and representations of reality. It exploits the fundamental trade-off between the complexity and simplicity of statistical sets in high-dimensional spaces without relying on global optimization techniques. We show that the frequency encoding of memories in SNNs can leverage this paradigm. It enables detecting and learning arbitrary information items, given that they operate in high dimensions. To illustrate the hypothesis, we develop a minimalist model of information processing in layered brain structures and study the emergence of extreme selectivity to multiple stimuli and associative memories. Our results suggest that global optimization of cost functions may be circumvented at different levels of information processing in SNNs, and replaced by chance learning, greatly simplifying the design of AI devices.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipRussian Science Foundation
dc.description.statuspub
dc.identifier.doi10.3389/fams.2025.1553779
dc.identifier.officialurlhttps://doi.org/10.3389/fams.2025.1553779
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130210
dc.journal.titleFrontiers in Applied Mathematics and Statistics
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124047NB-I00/ES/FUNDAMENTOS MATEMATICOS DE LA COGNICION PROFUNDA: HACIA EL DESARROLLO DE AGENTES AUTONOMOS BIOINSPIRADOS/
dc.relation.projectIDProject 24-19-00433
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ucmCibernética matemática
dc.subject.unesco1207.03 Cibernética
dc.titleBlessing of dimensionality in spiking neural networks: the by-chance functional learning
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
fams-11-1553779.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Data Sheet 1_material_suplementario.pdf
Size:
231.43 KB
Format:
Adobe Portable Document Format

Collections