Symmetries Of Accola-Maclachlan And Kulkarni Surfaces
Loading...
Download
Full text at PDC
Publication date
1999
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
For all g 2 there is a Riemann surface of genus g whose automorphism group has order 8g+8, establishing a lower bound for the possible orders of automorphism groups of Riemann surfaces. Accola and Maclachlan established the existence of such surfaces; we shall call them Accola-Maclachlan surfaces. Later Kulkarni proved that for suciently large g the Accola-Maclachlan surface was unique for g = 0;1; 2 mod 4 and produced exactly one additional
surface (the Kulkarni surface) for g = 3 mod 4. In this paper we determine the symmetries of these special surfaces, computing the number of ovals and the separability of the symmetries. The results are then applied to classify the real forms of these complex algebraic curves. Explicit equations of these real forms of Accola-Maclachlan surfaces are given in all but one case.