Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A spiking neural network-based model for anaerobic digestion process

dc.conference.date22-24 Junio 2016
dc.conference.placeAnacapri (Italia)
dc.conference.title2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion
dc.contributor.authorLo Sciuto, G.
dc.contributor.authorSusi, Gianluca
dc.contributor.authorCammarata, G.
dc.contributor.authorCapizzi, G.
dc.date.accessioned2025-02-01T14:05:51Z
dc.date.available2025-02-01T14:05:51Z
dc.date.issued2016-06
dc.descriptionSe deposita la versión enviada (preprint) de la ponencia
dc.description.abstractThere are many conversion technologies for the transformation of biomass into usable energy forms. Among these technologies, anaerobic digestion is one of the most attractive. In many papers appeared in the literature it has been demonstrated that the application of efficient mathematical models is an essential requirement to improve digester’s performance. In this paper a spiking neural network-based model for anaerobic digestion process is proposed. This model performs a long-term prediction of the concentration of the biogas (CH4 and CO2) at the 100th day of the process, by analysing the concentration evolution of 6 measurable marker-molecules (MMM) namely CH4, CH4S, CO2, H2, H2S and NH3 during the first 10 days of the process. For the validation of the model, a small domestic digester was realized. The tests carried out show an excellent agreement between the predicted values and those obtained with the digester.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationG. Lo Sciuto, G. Susi, G. Cammarata and G. Capizzi, "A spiking neural network-based model for anaerobic digestion process," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 2016, pp. 996-1003, doi: 10.1109/SPEEDAM.2016.7526003.
dc.identifier.doi10.1109/speedam.2016.7526003
dc.identifier.officialurlhttps://doi.org/10.1109/speedam.2016.7526003
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/7526003
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117520
dc.language.isoeng
dc.page.final1003
dc.page.initial996
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.cdu544
dc.subject.cdu602
dc.subject.keywordBiogas
dc.subject.keywordPrediction
dc.subject.keywordSpiking neural networks
dc.subject.keywordanaerobic process models
dc.subject.ucmBioinformática
dc.subject.ucmBiomatemáticas
dc.subject.ucmInformática (Informática)
dc.subject.ucmIngeniería química
dc.subject.unesco12 Matemáticas
dc.subject.unesco22 Física
dc.subject.unesco23 Química
dc.titleA spiking neural network-based model for anaerobic digestion process
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A spiking neural network_preprint.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format
Description:
Versión preprint de la ponencia