Integration in Cech theories and a bound on entropy
dc.contributor.author | Hernández Corbato, Luis | |
dc.contributor.author | Nieves Rivera, David Jesús | |
dc.contributor.author | Ruiz del Portal, Francisco R. | |
dc.contributor.author | Sánchez Gabites, Jaime Jorge | |
dc.date.accessioned | 2023-06-17T08:28:38Z | |
dc.date.available | 2023-06-17T08:28:38Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The evaluation of Alexander-Spanier cochains over formal simplices in a topological space leads to a notion of integration of Alexander-Spanier cohomology classes over Cech homology classes. The integral defines an explicit and non-degenerate pairing between the Alexander-Spanier cohomology and the Cech homology. Instead of working on the limits that define both groups, most of the discussion is carried out "at scale U", for an open covering U. As an application, we generalize a result of Manning to arbitrary compact spaces X: we prove that the topological entropy of f : X → X is bounded from below by the logarithm of the spectral radius of the map induced in the first Cech cohomology group. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73565 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7235 | |
dc.language.iso | eng | |
dc.relation.projectID | PGC2018-098321-B-I00; RYC2018-025843-I | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.14 | |
dc.subject.keyword | Cech types | |
dc.subject.keyword | Duality in algebraic topology | |
dc.subject.keyword | Topological entropy | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Integration in Cech theories and a bound on entropy | |
dc.type | journal article | |
dcterms.references | [1] R. L. Adler, A. G. Konheim, and M. H. McAndrew. Topological entropy. Trans. Amer. Math. Soc., 114:309-319, 1965. [2] J. W. Alexander. On the connectivity ring of an abstract space. Ann. of Math. (2), 37(3):698-708, 1936. [3] A. Asada. Integration of Alexander-Spanier cochains. J. Fac. Sci. Shinshu Univ., 5:79-106, 1970. [4] C. H. Dowker. Homology groups of relations. Ann. of Math. (2), 56:84-95, 1952. [5] S. Eilenberg and N. Steenrod. Foundations of Algebraic Topology. Princeton University Press, Princenton, New Jersey, 1952. [6] Y. Félix, S. Halperin, and J.-C. Thomas. Rational homotopy theory, volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001. [7] A. Giraldo, M. A. Morón, F. R. Ruiz del Portal, and J. M. R. Sanjurjo. Finite approximations to Cech homology. J. Pure Appl. Algebra, 163(1):81-92, 2001. [8] A. Hatcher. Algebraic topology. Cambridge University Press, 2002. [9] L. Hernández-Corbato, D. J. Nieves-Rivera, F. R. Ruiz Del Portal, and J. J. Sánchez-Gabites. Dynamics and eigenvalues in dimension zero. Ergodic Theory Dynam. Systems, 40(9):2434-2452, 2020. [10] J. G. Hocking and G. S. Young. Topology. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. [11] W. Hurewicz, J. Dugundji, and C. H. Dowker. Continuous connectivity groups in terms of limit groups. Ann. of Math. (2), 49:391-406, 1948. [12] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. [13] J. W. Keesee. Finitely-valued cohomology groups. Proc. Amer. Math. Soc., 1:418-422, 1950. [14] S. Lang. Algebra. Springer-Verlag, 2002. [15] S. Lefschetz. Algebraic Topology. American Mathematical Society Colloquium Publications, Vol. 27. American Mathematical Society, New York, 1942. [16] A. Manning. Topological entropy and the fi�rst homology group. In Dynamical systems - Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his �fiftieth birthday), pages 185-190. Lecture Notes in Math., Vol. 468, 1975. [17] W. Marzantowicz and F. Przytycki. Entropy conjecture for continuous maps of nilmanifolds. Israel J. Math., 165:349-379, 2008. [18] M. Misiurewicz and F. Przytycki. Entropy conjecture for tori. Bull. Acad. Polon. Sci. S�er. Sci. Math. Astronom. Phys., 25(6):575-578, 1977. [19] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park, CA, 1984. [20] W. M. Schmidt. Simultaneous approximation to algebraic numbers by rationals. Acta Math., 125:189-201, 1970. [21] E. H. Spanier. Cohomology theory for general spaces. Ann. Math., 49(2):407-427, 1948. [22] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., 1966. [23] E. Cech. Théorie générale de l'homologie dans un espace quelconque. Fund. Math., 19:149-183, 1932. [24] J. W. Vick. Homology theory, volume 145 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. [25] L. Vietoris. �Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann., 97(1):454-472, 1927. [26] M. Waldschmidt. Diophantine Approximation on Linear Algebraic Groups. Springer-Verlag, 2000. [27] Y. Yomdin. Volume growth and entropy. Israel J. Math., 57(3):285-300, 1987. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 87098c4b-1e25-4b37-b466-43febdc67ddf | |
relation.isAuthorOfPublication | 43ca1083-38a2-41ca-bbf4-2b54843939b4 | |
relation.isAuthorOfPublication | 59e9082d-866d-4344-a683-81ca8f8d841d | |
relation.isAuthorOfPublication.latestForDiscovery | 87098c4b-1e25-4b37-b466-43febdc67ddf |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- ruizdelportal_integration.pdf
- Size:
- 612.03 KB
- Format:
- Adobe Portable Document Format