Matrix summability methods and weakly unconditionally Cauchy series.

dc.contributor.authorAizpuru, A.
dc.contributor.authorPérez Eslava, C.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T03:30:55Z
dc.date.available2023-06-20T03:30:55Z
dc.date.issued2009
dc.description.abstractWe study new sequence spaces determined by series in normed spaces and a matrix summability method, giving new characterizations of weakly unconditionally Cauchy series. We obtain characterizations for the completeness of a normed space, and a version of the Orlicz-Pettis theorem via matrix summability methods is also proved.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20037
dc.identifier.doi10.1216/RMJ-2009-39-2-367
dc.identifier.issn0035-7596
dc.identifier.officialurlhttp://rmmc.eas.asu.edu/abstracts/rmj/vol39-2/aizppag1.pdf
dc.identifier.relatedurlhttp://projecteuclid.org/rmjm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43665
dc.issue.number2
dc.journal.titleRocky Mountain Mathematics Consortium
dc.language.isoeng
dc.page.final380
dc.page.initial367
dc.publisherRocky MT Math Consortim
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordMatrix summability
dc.subject.keywordWeakly unconditionally Cauchy series
dc.subject.keywordOrlicz-Pettis theorem
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleMatrix summability methods and weakly unconditionally Cauchy series.
dc.typejournal article
dc.volume.number39
dcterms.referencesA. Aizpuru, A. Gutiérrez and A. Sala, Unconditionally Cauchy series and Cesàro summability, preprint. P. Antosik and C. Swartz, Matrix methods in analysis, Lecture Notes Math. 1113, Springer-Verlag, Berlin, 1985. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. J. Boos, Classical and modern methods in summability, (assisted by Peter Cass), Oxford University Press, Oxford, 2000. J. Diestel, Sequences and series in Banach spaces, Grad. Texts Math. 92, Springer-Verlag, New York, 1984. C.W. McArthur, On relationships amongst certain spaces of sequences in an arbitrary Banach space, Canad. J. Math. 8 (1956), 192-197. F.J. Pérez, F. Benitez and A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series, Czechoslovak Math. J. 50 (2000), 889-896.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
seoane_matrix.pdf
Size:
135.93 KB
Format:
Adobe Portable Document Format

Collections