Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the classical limit and the infrared problem for non relativistic fermions interacting with the electromagnetic field

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorÁlvarez Estrada, Ramón F.
dc.date.accessioned2023-06-21T02:07:46Z
dc.date.available2023-06-21T02:07:46Z
dc.date.issued1984
dc.description© Gauthier-Villars, 1984, tous droits rèservès
dc.description.abstractThe classical limit and the infrared divergence problem for a non-relativistic charged quantum particle interacting with the quantized electromagnetic field are analized. Overall three momentum conservation is taken into account. A unitary transformation associated to the coherent state corresponding to a particle surrounded by a cloud of soft photons is performed upon the hamiltonian and the particle-field states. The transformed state represnting a moving dressed quantum particle and its energy are given by the Brillouin-Wigner perturbation theory. It is shown formally that the quantum energy approaches the classical electromagnetic field at the Plank constant h goes to zero. Moreover,all Feynman diagrams contributing to this quantum energy are infrared finite, without needing add diagrams of the same order in the electric charge to obtain the infrared finiteness. Those properties justify the usefulness of the unitary transformation. The Compton effect in the forward direction is studied using dressed charged particle states after the unitary transformation has been performed. The quantum cross section approaches the classical limit (Thomson´s formula) as h ͢͢͢͢͢ 0, and the Feynman diagrams are free of infrared divergences.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25519
dc.identifier.issn0246-0211
dc.identifier.officialurlhttp://www.numdam.org/item?id=AIHPA_1984__41_2_143_0
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64927
dc.issue.number2
dc.journal.titleAnnales de l Institut Henri Poincare-Physique Theorique
dc.language.isoeng
dc.page.final170
dc.page.initial143
dc.publisherGauthier-Villars
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleOn the classical limit and the infrared problem for non relativistic fermions interacting with the electromagnetic field
dc.typejournal article
dc.volume.number41
dcterms.references[1] F. Rohrlich, Fundamental Physical Problems of Quantum Electrodynamics in Foundatios of Radiation Theory and Quantum Electrodynamics. Edited by A. O. Barut, Plenum Press, New York, 1980. [2] I. Bialynicki-Birula, Acta Phys. Austriaca XVIII, t. 111, 1977. [3] F. Bloch and A. Nordsieck, Phys. Rev., t. 52, 1937, p. 54, Zbl 0017.23504 | JFM 63.1393.02 W. Braunbeck and E. Winmann, Z. Physik, t. 110, 1938, p. 360. JFM 64.0898.04 W. Pauli and M. Fierz, Nuovo Cimento, t. 15, 1938, p. 167. JFM 64.1487.01. [4] T.W. Kibble, Phys. Rev., t. 173, 1968, p. 1527; t. 174, 1968, p. 1882; t. 175, 1968, p. 1624. [5] V. Chung, Phys. Rev., t. 140 B, 1965, p. 1,110. [6] J.D. Dollard, J. Math. Phys., t. 5, 1964, p. 729. MR 163620. [7] L.D. Fadeev and P.P. Kulish, TIMF, t. 4, 1970, p. 153. [8] D. Zwanzinger, Phys. Rev. D., t. 7, 1973, p. 1082 ; t. 11, 1975, p. 3481 ; t. 11, 1975, p. 3504 ; t. 19, 1979, p. 3614 ; Phys. Lett. B, t. 94, 1980, p. 389 and Nuovo Cimento, t. 11, 1974, p. 145. [9] N. Papanicolau, Phys. Rep. C, t. 24, 1976, p. 231. [10] K. Krauss, L. Polley and G. Reents, Ann. Inst. Henri Poincaré A, t. XXVI, 1977, p. 109. Numdam | MR 479178. [11] K. Harada and R. Kubo, Nucl. Phys., t. B 191, 1981, p. 181. [12] C.P. Korthals Altes and E. De Rafael, Nucl. Phys. B, t. 106, 1976, p. 237. [13] H.D. Dahmen, B. Scholz and F. Steiner, Nucl. Phys. B, t. 202, 1982, p. 365. [14] I. Bialynicki-Birula, Ann. Phys., t. 67, 1971, p. 252. [15] E.P. Gross, Ann. Phys., t. 19, 1962, p. 219. Zbl 0118.44503. [16] E. Nelson, J. Math. Phys., t. 5, 1964, p. 1190. [17] J. Frohlich, Ann. Inst. Henri Poincaré A, t. XIX, 1973, p. 1. [18] R.F. Alvarez-Estrada, Ann. Inst. Henri Poincaré A, t. XXXI, 1979, p. 141. Numdam | MR 561919. [19] R.F. Alvarez-Estrada and E. Ros Martinez, Anales de Fisica A, t. 78, 1981, p. 79. E. Ros Martinez, Estudios de algunos problemas de interacción campo-partícula, Memoria de Licenciatura, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid, 1980. [20] F. Ruiz Ruiz, Cancelación de las divergencias infrarojas y límite Clásico de la Electrodinámica Cuántica no relativista, Memoria de Licenciatura, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid, 1982. [21] J.J. Sakurai, Advanced Quantum Mechanics, chap. 1, Addison-Wesley Pub. Co., Reading Massachusetts, 1967. Zbl 0158.45604. [22] W. Heitler, The Quantum Theory of Radiation, chap. I, § 6, Oxford at the Clarendon Press, third edition, London, 1966. [23] J.M. Ziman, Elements of Advanced Quantum Theory, chap. 3, Cambridge University Press, Cambridge, 1969. MR 251965 | Zbl 0177.56701. [24] T. Kato, Perturbation Theory for Linear Operators, theorem 4.3, Springer-Verlag, New York, 1968. Zbl 0148.12601. [25] G.C. Wick, Rev. Mod. Phys., t. 27, 1955, p. 339. MR 72766 | Zbl 0067.22202. [26] A. Galindo and P. Pascual, Mecánica Cuántica, chap. 8, § 11, Editorial Alhambra, Madrid, 1978.
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruiz FR39.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format

Collections