Techniques for measuring aerosol attenuation using the central laser facility at the Pierre Auger Observatory

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing LTD
Google Scholar
Research Projects
Organizational Units
Journal Issue
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
© 2013 IOP Publishing LTD. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por mas de 400 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MEB111003, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant Nos. 0450696, 0855680, The Grainger Foundation USA; NAFOSTED, Vietnam; ALFA-EC /HE-LEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.
UCM subjects
[1] The Pierre Auger Collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instr. Meth. A523 (2004) 50–95. [2] The Pierre Auger Collaboration, J. Abraham et al., The Fluorescence Detector of the Pierre Auger Observatory, Nucl. Instr. Meth. A620 (2010) 227–251, [arXiv:0907.4282]. [3] The Pierre Auger Collaboration, J. Abraham et al., A Study of the Effect of Molecular and Aerosol Conditions in the Atmosphere on Air Fluorescence Measurements at the Pierre Auger Observatory, Astropart. Phys. 33 (2010) 108–129, [arXiv:1002.0366]. [4] B. Fick et al., The Central Laser Facility at the Pierre Auger Observatory, JINST 1 (2006) P11003, [astro-ph/0507334]. [5] S. Y. BenZvi et al., The Lidar System of the Pierre Auger Observatory, Nucl. Instr. Meth. A574 (2007) 171–184, [astro-ph/0609063]. [6] K. Louedec for the Pierre Auger Collaboration, Atmospheric Monitoring at the Pierre Auger Observatory – Status and Update, in Proc. 32nd ICRC, vol. 2, (Beijing, China), pp. 63–66, 2011, [arXiv:1107.4806]. [7] S. Y. BenZvi et al., Measurement of the aerosol phase function at the Pierre Auger Observatory, Astropart. Phys. 28 (2007) 312–320, [arXiv:0704.0303]. [8] L. V. King, On the complex anisotropic molecule in relation to the dispersion and scattering of light, Proc. R. Soc. London Ser. A 104 (1923) 333–357. [9] B. Keilhauer and M. Will, Description of Atmospheric Conditions at the Pierre Auger Observatory Using Meteorological Measurements and Models, Eur. Phys. J. Plus 127 (2012) 96–105, [arXiv:1208.5417]. [10] The Pierre Auger Collaboration, P. Abreu et al., Data from the Global Data Assimilation System (GDAS) for the Pierre Auger Observatory, Astropart. Phys. 35 (2012) 591–607, [arXiv:1201.2276]. [11] M. I. Micheletti et al., Elemental analysis of aerosols collected at the Pierre Auger Cosmic Ray Observatory with PIXE technique complemented with SEM/EDX, Nucl. Instr. Meth. B288 (2012) 10–17. [12] The AIRFLY Collaboration,M. Ave et al., Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY, Nucl. Inst. Meth. A597 (2008) 41–45. [13] L. Wiencke et al. for the Pierre Auger Collaboration, Atmospheric “Super Test Beam” for the Pierre Auger Observatory, in Proc. 32nd ICRC, vol. 3, (Beijing, China), pp. 141–144, 2011, [arXiv:1107.4806]. [14] The High Resolution Fly’s Eye Collaboration (HiRes), R. U. Abbasi et al., Techniques for measuring atmospheric aerosols at the High Resolution Fly’s Eye experiment, Astropart. Phys. 25 (2006) 74–83, [astro-ph/0512423].