Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Self-sustained current oscillations in the kinetic theory of semiconductor superlattices

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Cebrián, E., Bonilla, L. L. y Carpio Rodríguez, A. M. «Self-Sustained Current Oscillations in the Kinetic Theory of Semiconductor Superlattices». Journal of Computational Physics, vol. 228, n.o 20, noviembre de 2009, pp. 7689-705. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2009.07.008.

Abstract

We present the first numerical solutions of a kinetic theory description of self-sustained current oscillations in n-doped semiconductor superlattices. The governing equation is a single-miniband Boltzmann-Poisson transport equation with a BGK (Bhatnagar-Gross-Krook) collision term. Appropriate boundary conditions for the distribution function describe electron injection in the contact regions. These conditions seamlessly become Ohm's law at the injecting contact and the zero charge boundary condition at the receiving contact when integrated over the wave vector. The time-dependent model is numerically solved for the distribution function by using the deterministic Weighted Particle Method. Numerical simulations are used to ascertain the convergence of the method. The numerical results confirm the validity of the Chapman-Enskog perturbation method used previously to derive generalized drift-diffusion equations for high electric fields because they agree very well with numerical solutions thereof.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections