Non-semisimple Lie algebras with Levi factor so(3), sl(2,R) and their invariants
Loading...
Official URL
Full text at PDC
Publication date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Citation
Abstract
We analyze the number N of functionally independent generalized Casimir invariants for non-semisimple Lie algebras \frak{s}\overrightarrow{% oplus}_{R}\frak{r} with Levi factors isomorphic to \frak{so}(3) and \frak{sl}(2,R) in dependence of the pair (R,\frak{r}) formed by a representation R of \frak{s} and a solvable Lie algebra \frak{r}. We show that for any dimension n >= 6 there exist Lie algebras \frak{s}\overrightarrow{\oplus}_{R}\frak{r} with non-trivial Levi decomposition such that N(\frak{s}% \overrightarrow{oplus}_{R}\frak{r}) = 0