Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New unexpected limit operators for homogenizing optimal control parabolic problems with dynamic reaction flow on the boundary of critically scaled particles

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorPodolskiy, Alexander V.
dc.contributor.authorShaposhnikova, Tatiana A.
dc.date.accessioned2024-07-09T08:01:45Z
dc.date.available2024-07-09T08:01:45Z
dc.date.issued2024
dc.description.abstractWe study the asymptotic behavior, as ε → 0, of the optimal control and the optimal state of an initial boundary value problem in a domain that is ε-periodically perforated by balls (or, equivalently it is the complementary to a set of spherical particles). On the boundary of the perforations (or of the particles) we assume a dynamic condition with a large growth coefficient in the time derivative. The control region is a possible small subregion and the cost functional includes a balance between the prize of the controls and the error with respect to a given target profile. We consider the so-called “critical case” concerning a certain relation between the structure’s period, the diameter of the balls, and the growth coefficient of the boundary condition. We show that the homogenized problem contains in the limit state equation a nonlocal "strange term", given as a solution to a suitable ordinary differential equation. We prove the weak convergence of the state and the optimal control to the state and the optimal control associated with the limit cost functional which now contains an unexpected new “strange” term.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.identifier.citationDíaz, J. I., Podolskiy, A. V., & Shaposhnikova, T. A.. New unexpected limit operators for homogenizing optimal control parabolic problems with dynamic reaction flow on the boundary of critically scaled particles. 2024. arXiv preprint arXiv:2406.18712.
dc.identifier.doi10.48550/arXiv.2406.18712
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105831
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.keywordHomogenized cost functional
dc.subject.keywordHomogenization
dc.subject.keywordOptimal control
dc.subject.keyword«Strange» term
dc.subject.keywordDynamic boundary condition
dc.subject.ucmAnálisis matemático
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.20 Ecuaciones Diferenciales en derivadas Parciales
dc.titleNew unexpected limit operators for homogenizing optimal control parabolic problems with dynamic reaction flow on the boundary of critically scaled particles
dc.typejournal article
dc.type.hasVersionAO
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
diaz_newunexpected.pdf
Size:
210.95 KB
Format:
Adobe Portable Document Format

Collections