Unified Treatment of Explicit and Trace Formulas via Poisson-Newton Formula

dc.contributor.authorMuñoz, Vicente
dc.contributor.authorMarcos Peréz, Ricardo
dc.date.accessioned2023-06-19T14:53:55Z
dc.date.available2023-06-19T14:53:55Z
dc.date.issued2015
dc.description.abstractWe prove that a Poisson-Newton formula, in a broad sense, is associated to each Dirichlet series with a meromorphic extension to the whole complex plane of finite order. These formulas simultaneously generalize the classical Poisson formula and Newton formulas for Newton sums. Classical Poisson formulas in Fourier analysis, explicit formulas in number theory and Selberg trace formulas in Riemannian geometry appear as special cases of our general Poisson-Newton formula.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30122
dc.identifier.doi10.1007/s00220-015-2312-1
dc.identifier.issn0010-3616
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs00220-015-2312-1
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34630
dc.issue.number3
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final1230
dc.page.initial1201
dc.publisherSpringer
dc.relation.projectIDMTM2010-17389
dc.rights.accessRightsrestricted access
dc.subject.cdu511
dc.subject.keywordDirichlet series
dc.subject.keywordPoisson formula
dc.subject.keywordExplicit formula
dc.subject.keywordTrace Formula
dc.subject.ucmTeoría de números
dc.subject.unesco1205 Teoría de Números
dc.titleUnified Treatment of Explicit and Trace Formulas via Poisson-Newton Formula
dc.typejournal article
dc.volume.number336
dcterms.referencesAhlfors, L.V.: Complex Analysis. 3rd edn. McGraw-Hill, New York (1979) Abramowitz, M., Stegun, I.A. (1965) Handbook of Mathematical Functions. Dover Publications, Inc., New York Barner, K. (1981) On A Weil’s explicit formula. J. Reine Angew. Math. 323: pp. 139-152 Cartier, P., Voros, A.: Une nouvelle interprétation de la formule de traces de Selberg, vol. 87, pp. 1–68. Progress in Mathematics, Birkhauser (1990) Conrey, J. (2003) The Riemann hypothesis. Not. Am. Math. Soc. 50: pp. 341-353 Cramer, H. (1874) Studien über die Nullstellen der Riemannscher Zetafunktion. Math Zeitschrift 4: pp. 65-82 Delsarte, J. (1966) Formules de Poisson avec reste. J. Anal. Math. 17: pp. 419-431 Duistermaat, J.J., Guillemin, V.W. (1975) The spectrum of positive elliptic operators and periodic bicharacteristics. Inv. Math. 29: pp. 39-79 Guinand, A.P. (1948) A summation formula in the theory of prime numbers. Proc. Lond. Math. Soc. 50: pp. 107-119 Gutzwiller, M.C. (1990) Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics, vol. 1. Springer, Berlin Hardy, G.H., Riesz, M. (1915) The General Theory of Dirichlet’s Series. Dover, New York Landau, E.: Handbuch der Lehre von der Verleitung der Primzahlen. Teubner, Leipzig (1909) Lang, S. (1994) Algebraic Number Theory. Graduate Texts in Mathematics, 110. Springer, Berlin Muñoz, V., Pérez-Marco, R.: On the genus of meromorphic functions. Proc. Am. Math. Soc. 143(1), 341–351 (2015) Riemann, B. (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie, Berlin Selberg, A. (1856) Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series. J. Indian Math. Soc. 20: pp. 47-87 Titchmarsh, E.C. (1986) The theory of Riemann zeta-functions. Oxford University Press, Oxford Voros, A. (2010) Zeta Functions over Zeros of Zeta Functions. Lecture Notes of the Unione Matematica Italiana. Springer, New York Weil, A.: Sur les formules explicites de la théorie des nombres. Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], Tome Supplémentaire, pp. 252–265 (1952) Zemanian, A.H. (1987) Distribution Theory and Transform Analysis. Dover, New York
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz101.pdf
Size:
342.56 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz101-1.pdf
Size:
328.64 KB
Format:
Adobe Portable Document Format

Collections