The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Geophysical Union
Google Scholar
Research Projects
Organizational Units
Journal Issue
The atmospheric response to the 11 year solar cycle (SC) and its combination with the quasi-biennal oscillation (QBO) are analyzed in four simulations of the Whole Atmosphere Community Climate Model version 3.5 (WACCM3.5), which were performed with observed sea surface temperatures, volcanic eruptions, greenhouse gases, and a nudged QBO. The analysis focuses on the annual mean response of the model to the SC and on the evolution of the solar signal during the Northern Hemispheric winter. WACCM3.5 simulates a significantly warmer stratosphere under solar maximum conditions compared to solar minimum. The vertical structure of the signal in temperature and ozone at low latitudes agrees with observations better than previous versions of the model. The temperature and wind response in the extratropics is more uncertain because of its seasonal dependence and the large dynamical variability of the polar vortex. However, all four simulations reproduce the observed downward propagation of zonal wind anomalies from the upper stratosphere to the lower stratosphere during boreal winter resulting from solar-induced modulation of the polar night jet and the Brewer-Dobson circulation. Combined QBO-SC effects in the extratropics are consistent with observations, but they are not robust across the ensemble members. During boreal winter, solar signals are also found in tropospheric circulation and surface temperature. Overall, these results confirm the plausibility of proposed dynamical mechanisms driving the atmospheric response to the SC. The improvement of the model climatology and variability in the polar stratosphere is the basis for the success in simulating the evolution and magnitude of the solar signal.
© 2012 by the American Geophysical Union. The authors thank Katja Matthes for instructive comments and fruitful discussions. G. Chiodo was supported by the Spanish Project CONSOLIDER (grant CSD2007-00050-II-PR4/07), TRODIM (grant CGL2007-65891-CO5-02), and the Spanish Ministry of Education in the framework of the "FPU" doctoral fellowship (grant AP2009-0064). N. Calvo was partially supported by the Advanced Study Program (ASP) at NCAR.
Andrews, D., J. Holton, and C. Leovy (1987), Middle Atmosphere Dynamics, Academic, Orlando, Fla. Austin, J., et al. (2008), Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res., 113, D11306, doi:10.1029/2007JD009391. Austin, J., et al. (2010), Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577. Barriopedro, D., R. García Herrera, and R. Huth (2008), Solar modulation of Northern Hemisphere winter blocking, J. Geophys. Res., 113, D14118, doi:10.1029/2008JD009789. Butchart, N., A. Charlton-Perez, I. Cionni, S. Hardiman, and K. Krüger (2010), Stratospheric dynamics, in SPARC Report on the Evaluation of Chemistry-Climate Models, SPARC Rep. 5, pp. 109–147, World Meteorol. Organ., Geneva, Switzerland. Calvo, N., and D. Marsh (2011), The combined effects of ENSO and the 11-year solar cycle on the Northern Hemisphere polar stratosphere, J. Geophys. Res., 116, D23112, doi:10.1029/2010JD015226. Calvo, N., M. Giorgetta, and C. Peña Ortiz (2007), Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations, J. Geophys. Res., 112, D10124, doi:10.1029/2006JD007844. Calvo, N., M. Giorgetta, R. García Herrera, and E. Manzini (2009), Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445. Claud, C., C. Cagnazzo, and P. Keckhut (2008), The effect of the 11-year solar cycle on the temperature in the lower stratosphere, J. Atmos. Sol. Terr. Phys., 70(16), 2031–2040. Collins, W., et al. (2004), Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note NCAR/TN-464+ STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Crooks, S., and L. Gray (2005), Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset, J. Clim., 18, 996–1015, doi:10.1175/JCLI-3308.1. Egorova, T., E. Rozanov, E. Manzini, M. Haberreiter, W. Schmutz, V. Zubov, and T. Peter (2004), Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model, Geophys. Res. Lett., 31, L06119, doi:10.1029/2003GL019294. Eyring, V., et al. (2010), Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10(19), 11,659–11,710. Fleming, E., S. Chandra, C. Jackman, D. Considine, and A. Douglass (1995), The middle atmospheric response to short and long term solar UV variations: Analysis of observations and 2D model results, J. Atmos. Terr. Phys., 57(4), 333–365. Frame, T., and L. J. Gray (2010), The 11-year solar cycle in ERA-40 data: An update to 2008, J. Clim., 23, 2213–2222, doi:10.1175/2009JCLI3150.1. Garcia, R., D. Marsh, D. Kinnison, B. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. García Herrera, R., N. Calvo, R. Garcia, and M. Giorgetta (2006), Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data, J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061. Garny, H., G. Bodeker, and M. Dameris (2007), Trends and variability in stratospheric mixing: 1979–2005, Atmos. Chem. Phys., 7(3), 6189–6228. Gray, L., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer (2004), Solar and QBO influences on the timing of stratospheric sudden warmings, J. Atmos. Sci., 61(23), 2777–2796. Gray, L., et al. (2010), Solar influences on climate, Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282. Haigh, J. (1994), The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 370(6490), 544–546. Haigh, J., and M. Blackburn (2006), Solar influences on dynamical coupling between the stratosphere and troposphere, Space Sci. Rev., 125(1), 331–344, doi:10.1007/s11214-006-9067-0. Holton, J., and H. Tan (1980), The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208. Hood, L., J. Jirikowic, and J. McCormack (1993), Quasi-decadal variability of the stratosphere: Influence of long-term solar ultraviolet variations, J. Atmos. Sci., 50(24), 3941–3958. Huang, T., and G. Brasseur (1993), Effect of long-term solar variability in a two-dimensional interactive model of the middle atmosphere, J. Geophys. Res., 98(D11), 413–420, doi:10.1029/93JD02187. Ito, K., Y. Naito, and S. Yoden (2009), Combined effects of QBO and 11-year solar cycle on the winter hemisphere in a stratosphere-troposphere coupled system, Geophys. Res. Lett., 36, L11804, doi:10.1029/2008GL037117. Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437–471. Kinnison, D., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879. Kistler, R., et al. (2001), The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull. Am. Meteorol. Soc., 82(2), 247–268. Kodera, K., and Y. Kuroda (2000), A mechanistic model study of slowly propagating coupled stratosphere-troposphere variability, J. Geophys. Res., 105(D10), 361–370. Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, J. Geophys. Res., 107(D24), 4749, doi:10.1029/2002JD002224. Kuroda, Y., and K. Kodera (2001), Variability of the polar night jet in the Northern and Southern Hemispheres, J. Geophys. Res., 106(D18), 20,703–20,713. Kuroda, Y., and K. Kodera (2002), Effect of solar activity on the polarnight jet oscillation in the Northern and Southern Hemisphere winter, J. Meteorol. Soc. Jpn., 80(4B), 973–984. Labitzke, K. (1987), Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett., 14(5), 535–537, doi:10.1029/GL014i005p00535. Labitzke, K. (2004), On the signal of the 11-year sunspot cycle in the stratosphere and its modulation by the quasi-biennial oscillation, J. Atmos. Sol. Terr. Phys., 66(13–14), 1151–1157, doi:10.1016/j.jastp.2004.05.011. Labitzke, K. (2005), On the solar cycle-QBO relationship: A summary, J. Atmos. Sol. Terr. Phys., 67(1–2), 45–54, doi:10.1016/j.jastp.2004.07.016. Labitzke, K., and H. Van Loon (1989), Association between the 11-Yr Solar Cycle, the QBO, and the Atmosphere. Part III: Aspects of the association, J. Clim., 2(6), 554–565, doi:10.1175/1520-0442(1989)002<0554: ABTYSC>2.0.CO;2. Labitzke, K., and H. Van Loon (1995), Connection between the troposphere and stratosphere on a decadal scale, Tellus, Ser. A, 47(2), 275–286, doi:10.1034/j.1600-0870.1995.t01-1-00008.x. Labitzke, K., J. Austin, N. Butchart, J. Knight, M. Takahashi, M. Nakamoto, T. Nagashima, J. Haigh, and V. Williams (2002), The global signal of the 11-year solar cycle in the stratosphere: Observations and models, J. Atmos. Sol. Terr. Phys., 64(2), 203–210, doi:10.1016/S1364-6826(01)00084-0. Labitzke, K., M. Kunze, and S. Broennimann (2006), Sunspots, the QBO and the stratosphere in the North Polar region—20 years later, Meteorol. Z. [Berlin], 15(3), 355–364, doi:10.1127/0941-2948/2006/0136. Lean, J., G. Rottman, H. Kyle, T. Woods, J. Hickey, and L. Puga (1997), Detection and parameterization of variations in solar mid-and nearultraviolet radiation (200–400 nm), J. Geophys. Res., 102(D25), 29,939–29,956, doi:10.1029/97JD02092. Lean, J., G. Rottman, J. Harder, and G. Kopp (2005), SORCE contributions to new understanding of global change and solar variability, Sol. Phys., 230, 27–53, doi:10.1007/s11207-005-1527-2. Lee, H., and A. Smith (2003), Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades, J. Geophys. Res., 108(D2), 4049, doi:10.1029/2001JD001503. Lin, S. (2004), A vertically Lagrangian finite-volume dynamical core for global models, Mon. Weather Rev., 132, 2293–2307, doi:10.1175/1520- 0493(2004)132<2293:AVLFDC>2.0.CO;2. Lockwood, M., R. Harrison, T. Woollings, and S. Solanki (2010), Are cold winters in Europe associated with low solar activity?, Environ. Res. Lett., 5(2), 024001, doi:10.1088/1748-9326/5/2/024001. Manzini, E., et al. (2010), Natural variability, in SPARC Report on the Evaluation of Chemistry-Climate Models, SPARC Rep. 5, pp. 306–346, World Meteorol. Organ., Geneva, Switzerland. Marsh, D., and R. Garcia (2007), Attribution of decadal variability in lower-stratospheric tropical ozone, Geophys. Res. Lett., 34, L21807, doi:10.1029/2007GL030935. Marsh, D., R. Garcia, D. Kinnison, B. Boville, F. Sassi, S. Solomon, and K. Matthes (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306. Matthes, K., U. Langematz, L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11-year solar signal in the Freie Universitaet Berlin climate middle atmosphere model (FUB-CMAM), J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012. Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz (2006), Transfer of the solar signal from the stratosphere to the troposphere: Northern winter, J. Geophys. Res., 111, D06108, doi:10.1029/2005JD006283. Matthes, K., D. Marsh, R. Garcia, D. Kinnison, F. Sassi, and S. Walters (2010), Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings, J. Geophys. Res., 115, D18110, doi:10.1029/2009JD013020. McCormack, J., and L. Hood (1996), Apparent solar cycle variations of upper stratospheric ozone and temperature: Latitude and seasonal dependences, J. Geophys. Res., 101(D15), 20,933–20,944, doi:10.1029/96JD01817. McCormack, J., D. Siskind, and L. Hood (2007), Solar-QBO interaction and its impact on stratospheric ozone in a zonally averaged photochemical transport model of the middle atmosphere, J. Geophys. Res., 112, D16109, doi:10.1029/2006JD008369. Meehl, G., J. Arblaster, K. Matthes, F. Sassi, and H. van Loon (2009), Amplifying the Pacific climate system response to a small 11-year solar cycle forcing, Science, 325(5944), 1114–1118, doi:10.1126/science.1172872. Pap, J., P. Fox, C. Fröhlich, H. S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg, and S. T. Wu (Eds.) (2003), Solar Variability and Its Effects on Climate, Geophys. Monogr. Ser., vol. 141, AGU, Washington, D. C., doi:10.1029/GM141. Randel, W., and F. Wu (1996), Isolation of the ozone QBO in SAGE 2 data by singular-value decomposition, J. Atmos. Sci., 53(17), 2546–2560, doi:10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2. Randel, W., and F. Wu (2007), A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 112, D06313, doi:10.1029/2006JD007339. Richter, J., F. Sassi, and R. Garcia (2009), Towards a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, doi:10.1175/2009JAS3112.1. Rozanov, E., M. Schlesinger, T. Egorova, B. Li, N. Andronova, and V. Zubov (2004), Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model, J. Geophys. Res., 109, D01110, doi:10.1029/2003JD003796. Salby, M., and P. Callaghan (2000), Connection between the solar cycle and the QBO: The missing link, J. Clim., 13(14), 2652–2662, doi:10.1175/1520-0442(1999)012<2652:CBTSCA>2.0.CO;2. Sassi, F., D. Kinnison, B. Boville, R. Garcia, and R. Roble (2004), Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434. Sato, M., J. Hansen, M. McCormick, and J. Pollack (1993), Stratospheric aerosol optical depths, 1850–1990, J. Geophys. Res., 98(D12), 22,987–22,994, doi:10.1029/93JD02553. Schmidt, H., G. Brasseur, and M. Giorgetta (2010), Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennial oscillation, J. Geophys. Res., 115, D00I14, doi:10.1029/2009JD012542. Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan (1999), Solar cycle variability, ozone, and climate, Science, 284(5412), 305–308, doi:10.1126/science.284.5412.305. Smith, A., and K. Matthes (2008), Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO, J. Geophys. Res., 113, D05311, doi:10.1029/2007JD009051. Solomon, S., and L. Qian (2005), Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160. Soukharev, B., and L. Hood (2006), Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparisons with models, J. Geophys. Res., 111, D20314, doi:10.1029/2006JD007107. Thompson, D., and J. Wallace (1998), The Arctic Oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25(9), 1297–1300, doi:10.1029/98GL00950. Tiao, G., G. Reinsel, D. Xu, J. Pedrick, X. Zhu, A. Miller, J. DeLuisi, C. Mateer, and D. Wuebbles (1990), Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation, J.Geophys. Res., 95(D12), 20,507–20,517, doi:10.1029/JD095iD12p20507. Tilmes, S., R. Garcia, D. Kinnison, A. Gettelman, and P. Rasch (2009), Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420. Tourpali, K., C. Schuurmans, R. Van Dorland, B. Steil, and C. Brühl (2003), Stratospheric and tropospheric response to enhanced solar UV radiation: A model study, Geophys. Res. Lett., 30(5), 1231, doi:10.1029/2002GL016650. Tsutsui, J., K. Nishizawa, and F. Sassi (2009), Response of the middle atmosphere to the 11-year solar cycle simulated with the Whole Atmosphere Community Climate Model, J. Geophys. Res., 114, D02111, doi:10.1029/2008JD010316. Uppala, S., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131(612), 2961–3012, doi:10.1256/qj.04.176. White, W., and Z. Liu (2008), Non-linear alignment of El Nino to the 11-yr solar cycle, Geophys. Res. Lett., 35, L19607, doi:10.1029/ 2008GL034831.