On the detection of the solar signal in the tropical stratosphere

Thumbnail Image
Full text at PDC
Publication Date
Chiodo, Gabriel
Marsh, D.R.
García Herrera, Ricardo
García, J.A.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Copernicus publications
Google Scholar
Research Projects
Organizational Units
Journal Issue
We investigate the relative role of volcanic eruptions, El Niño–Southern Oscillation (ENSO), and the quasibiennial oscillation (QBO) in the quasi-decadal signal in the tropical stratosphere with regard to temperature and ozone commonly attributed to the 11 yr solar cycle. For this purpose, we perform transient simulations with the Whole Atmosphere Community Climate Model forced from 1960 to 2004 with an 11 yr solar cycle in irradiance and different combinations of other forcings. An improved multiple linear regression technique is used to diagnose the 11 yr solar signal in the simulations. One set of simulations includes all observed forcings, and is thereby aimed at closely reproducing observations. Three idealized sets exclude ENSO variability, volcanic aerosol forcing, and QBO in tropical stratospheric winds, respectively. Differences in the derived solar response in the tropical stratosphere in the four sets quantify the impact of ENSO, volcanic events and the QBO in attributing quasi-decadal changes to the solar cycle in the model simulations. The novel regression approach shows that most of the apparent solar-induced lower-stratospheric temperature and ozone increase diagnosed in the simulations with all observed forcings is due to two major volcanic eruptions (i.e., El Chichón in 1982 and Mt. Pinatubo in 1991). This is caused by the alignment of these eruptions with periods of high solar activity. While it is feasible to detect a robust solar signal in the middle and upper tropical stratosphere, this is not the case in the tropical lower stratosphere, at least in a 45 yr simulation. The present results suggest that in the tropical lower stratosphere, the portion of decadal variability that can be unambiguously linked to the solar cycle may be smaller than previously thought.
© Author(s) 2014. The authors thank J. Añel, K. Matthes, and J. Richter for performing two of the simulations. The authors are grateful for the support with high-performance computing from Yellowstone (ark:/85065/d7wd3xhc), provided by NCAR’s Computational and Information System Laboratory, sponsored by the National Science Foundation. Computing resources were also provided by the Barcelona Supercomputing Center (BSC), Centro Extremeño de Investigación, Innovación Tecnológica y Supercomputación (CENITS), and Centro de Supercomputación de Galicia (CESGA). The authors thankfully acknowledge the technical expertise and assistance provided by BSC, CENITS, and CESGA for carrying out the model simulations in the MareNostrum, Lusitania, and Finisterrae supercomputers. The authors also acknowledge the European COST Action ES1005. G. Chiodo was supported by the Spanish Ministry of Education in the framework of the FPU doctoral fellowship (grant AP2009-0064).This work was also supported by the Spanish Ministry of Science and Innovation (MCINN) through the CONSOLIDER (CSD2007- 00050-II-PR4/07) and MATRES (CGL2012-34221) projects. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research with sponsorship of the National Science Foundation.
1) Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, doi:10.5194/acp-13-11221-2013, 2013. 2) Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Brühl, C. Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., and Tian, W.: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res., 113, 1–20, doi:10.1029/2007JD009391, 2008. 3) Baldwin, M., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–230, 2001. 4) Bisgaard, S. and M. Kulahci: Time Series Analysis and Forecasting by Example, vol. 815, Wiley, Singapore, 2011. 5) Box, G., and Jenkins, G.: Time Series Analysis. Forecasting and Control, Holder Day, San Francisco, 1980. 6) Calvo, N., García, R., Randel, W., and Marsh, D. R.: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm enso events, J. Atmos. Sci., 67, 2331–2340, 2010. 7) CCMVal-2: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, edited by: Eyring, V., Shepherd, T. G., and Waugh, D. W., Tech. rep., SPARC Report, No. 5, WCRP-132, WMO/TD-1526, World Meteorological Organization, Geneva, 2010. 8) Chiodo, G., Calvo, N., Marsh, D. R., and García-Herrera, R.: The 11 year solar cycle in transient WACCM3.5 simulations, J. Geophys. Res., 117, D06109, doi:10.1029/2011JD016393, 2012. 9) Crooks, S. and Gray, L.: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset, J. Climate, 18, 996–1015, doi:10.1175/JCLI-3308.1, 2005. 10) Díaz, J., García, R., De Castro, F. V., Hernández, E., López, C., and Otero, A.: Effects of extremely hot days on people older than 65 years in seville (Spain) from 1986 to 1997, Int. J. Biometeorol., 46, 145–149, 2002. 11) Díaz, J., Jordán, A., García, R., López, C., Alberdi, J., Hernández, E., and Otero, A.: Heat waves in madrid 1986–1997: effects on the health of the elderly, Int. Arch. Occ. Env. Hea., 75, 163–170, 2002. 12) Eyring, V., Cionni, I., Bodeker, G. E., Charlton-Perez, A. J., Kinnison, D. E., Scinocca, J. F., Waugh, D. W., Akiyoshi, H., Bekki, S., Chipperfield, M. P., Dameris, M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., Kubin, A., Langematz, U., Mancini, E., Marchand, M., Nakamura, T., Oman, L. D., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., Braesicke, P., Hardiman, S. C., Lamarque, J. F., Morgenstern, O., Pyle, J. A., Smale, D., and Yamashita, Y.: Multimodel assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451–9472, doi:10.5194/acp-10-9451-2010, 2010. 13) Calvo-Fernández, N. C., García-Herrera, R., Puyol, D. G., Hernández, E., García, R., Gimeno, L., and Ribera, P.: Analysis of the enso signal in tropospheric and stratospheric temperatures observed by msu, 1979–2000, J. Climate, 17, 3934–3946, 2004. 14) Frame, T. and Gray, L.-J.: The 11-year solar cycle in era-40 data: an update to 2008, J. Climate, 23, 2213–2222, 2010. 15) García, R., Marsh, D. R., Kinnison, D., Boville, B., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485, 2007. 16) Gray, L., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., Van Geel, B., and White, W.: Solar influences on climate, Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282, 2010. 17) Haigh, J. and Blackburn, M.: Solar influences on dynamical coupling between the stratosphere and troposphere, Space Sci. Rev., 125, 331–344, 2006. 18) Hood, L.: The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere, J. Geophys. Res., 102, 1355–1370, 1997. 19) Hood, L. and Soukharev, B.: Quasi-decadal variability of the tropical lower stratosphere: The role of extratropical wave forcing, J. Atmos. Sci., 60, 2389–2403, 2003. 20) Hood, L., Soukharev, B., and McCormack, J.: Decadal variability of the tropical stratosphere: Secondary influence of the el niño–southern oscillation, J. Geophys. Res., 115, D11113, doi:10.1029/2009JD012291, 2010. 21) Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model, J. Climate, 21, 5145–5153, 2008. 22) Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224, 2002. 23) Lean, J., Rottman, G., Harder, J., and Kopp, G.: Sorce contributions to new understanding of global change and solar variability, The Solar Radiation and Climate Experiment (SORCE), Sol. Phys., 230, 27–53, 2005. 24) Lee, H. and Smith, A.: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades, J. Geophys. Res., 108, D24049, doi:10.1029/2001JD001503, 2003. 25) Marsh, D. R. and García, R.: Attribution of decadal variability in lower-stratospheric tropical ozone, Geophys. Res. Lett., 34, L21807, doi:10.1029/2007GL030935, 2007. 26) Matthes, K., Marsh, D., García, R., Kinnison, D., Sassi, F., and Walters, S.: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings J. Geophys. Res., 115, D18110, doi:10.1029/2009JD013020, 2010. 27) Meehl, G., Arblaster, J., Matthes, K., Sassi, F., and van Loon, H.: Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing, Science, 325, 1114–1118, 2009. 28) Pap, J. and Fox, P.: Solar variability and its effects on climate, Washington DC American Geophysical Union Geophysical Monograph Series, 141, 356 pp., doi:10.1029/141GM, 2004. 29) Randel, W. J., Wu, F., Russell, J., Waters, J., and Froidevaux, L.: Ozone and temperature changes in the stratosphere following the eruption of mount pinatubo, J. Geophys. Res., 100, 16753–16764, 1995. 30) Randel, W. and Wu, F.: Isolation of the Ozone QBO in SAGE 2 Data by Singular-Value Decomposition, J. Atmos. Sci., 53, 2546–2560, 1996. 31) Randel, W. J., García, R. R., and Wu, F.: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget, J. Atmos. Sci., 59, 2141–2152, 2002. 32) Randel, W. and Wu, F.: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res, 112, D06313, doi:10.1029/2006JD007339, 2007. 33) Randel, W., García, R., Calvo, N., and Marsh, D.: ENSO in-fluence on zonal mean temperature and ozone in the tropical lower stratosphere, Geophys. Res. Lett, 36, L15822, doi:10.1029/2009GL039343, 2009. 34) Randel, W. J., Shine, K. P., Austin, J., Barnett, J., Claud, C., Gillett, N. P., Keckhut, P., Langematz, U., Lin, R., Long, C., Mears, C., Miller, A., Nash, J., Seidel, D. J., Thompson, D. W. J., Wu, F., and Yoden, S.: An update of observed stratospheric temperature trends, J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421, 2009. 35) Rienecker, M. M., Suárez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K. Bloom, S., Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, M., and Woolen, J.: Merra: Nasa’s modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, 2011. 36) Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000. 37) Salby, M. and Callaghan, P.: Connection between the solar cycle and the qbo: The missing link, J. Climate, 13, 2652–2662, 2000. 38) Schmidt, H., Brasseur, G., and Giorgetta, M.: Solar cycle signal in a general circulation and chemistry model with internally generated quasi biennial oscillation, J. Geophys. Res., 115, D00I14, doi:10.1029/2009JD012542, 2010. 39) Smith, A. and Matthes, K.: Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO, J. Geophys. Res., 113, D05311, doi:10.1029/2007JD009051, 2008. 40) Soukharev, B. and Hood, L.: Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparisons with models, J. Geophys. Res., 111, D20314, doi:10.1029/2006JD007107, 2006. 41) Thomason, L., Poole, L., and Deshler, T.: A global climatology of stratospheric aerosol surface area density deduced from stratospheric aerosol and gas experiment ii measurements: 1984–1994, J. Geophys. Res.,102, 8967–8976, 1997. 42) Tiao, G., Reinsel, G., Xu, D., Pedrick, J., Zhu, X., Miller, A., DeLuisi, J., Mateer, C., and Wuebbles, D.: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation, J. Geophys. Res., 95, 20507–20517, 1990. 43) Tilmes, S., García, R., Kinnison, D., Gettelman, A., and Rasch, P.: Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420, 2009. 44) Wilks, D. S.: Statistical methods in the atmospheric sciences, vol. 100, Academic press, Oxford, 2011.