Projective moduli space of semistable principal sheaves for a reductive group.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
University of Catania
Google Scholar
Research Projects
Organizational Units
Journal Issue
Let X be a smooth projective complex variety, and let G be an algebraic reductive complex group. We define the notion of principal G-sheaf, that generalises the notion of principal G-bundle. Then we define a notion of semistability, and construct the projective moduli space of semistable principal G-sheaves on X. This is a natural compactification of the moduli space of principal G-bundles. This is the announcement note presented by the second author in the conference held at Catania (11-13 April 2001), dedicated to the 60th birthday of Silvio Greco. Detailed proofs will appear elsewhere.
Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001).
UCM subjects
Unesco subjects
A. Borel, Linear algebraic groups, New York: W. A. Benjamin Inc. 1969. J. Cilleruelo - I. Sols, The Severi bound on sections of rank two semistable bundles on a Riemann surface, to appear in Ann. of Math., Nov. 2001. G. Faltings, Moduli stacks for bundles on semistable curves, Math. Ann., 304 (1996), pp. 489–515. D. Gieseker, On the moduli of vector bundles on an algebraic surfaces, Ann. Math., 106 (1977), pp. 45–60. T. Gómez - I. Sols, Stability of conic bundles, Internat. J. Math., 11 (2000), pp. 1027-1055. T. Gómez - I. Sols, Stable tensor fields and moduli space of principal G-sheaves for classical groups, (math. AG/0103150). D. Huybrechts - M. Lehn, Framed modules and their moduli, Internat. J. Math., 6 (1995), pp. 297-324. M. Maruyama, Moduli of stable sheaves. I, J. Math. Kyoto Univ., 17 (1977), pp. 91–126. M. Maruyama, Moduli of stable sheaves. II, J. Math. Kyoto Univ., 18 (1978), pp. 557–614. D. Mumford - J. Fogarty - F. Kirwan, Geometric invariant theory, (Third edition) Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994. M.S. Narasimhan - C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., 82 (1965), pp. 540–567. A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann., 213 (1975), pp. 129–152. A. Ramanathan, Moduli for principal bundles over algebraic curves: I and II, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), pp. 301–326 and pp. 421–449. A. Schmitt, A universal construction for moduli spaces of decorated vector bundles over curves, preprint 2000, math. AG/0006029. C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. Math., 85 (1967), pp. 303–336. C.S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972), pp. 511-556. F. Severi, Sulla classificazione delle rigate algebriche, Rend. Mat., 2 (1941), pp. 1-32. C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S., 79 (1994), pp. 47–129. C. Sorger, Thêta-charactéristiques des courbes tracées sur une surface lisse , J. reine angew. Math., 435 (1993), pp. 83–118.