Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Projective moduli space of semistable principal sheaves for a reductive group.

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorGómez, Tomás L.
dc.date.accessioned2023-06-20T18:42:50Z
dc.date.available2023-06-20T18:42:50Z
dc.date.issued2000
dc.descriptionDedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001).
dc.description.abstractLet X be a smooth projective complex variety, and let G be an algebraic reductive complex group. We define the notion of principal G-sheaf, that generalises the notion of principal G-bundle. Then we define a notion of semistability, and construct the projective moduli space of semistable principal G-sheaves on X. This is a natural compactification of the moduli space of principal G-bundles. This is the announcement note presented by the second author in the conference held at Catania (11-13 April 2001), dedicated to the 60th birthday of Silvio Greco. Detailed proofs will appear elsewhere.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Cultura (Spain)
dc.description.sponsorshipEAGER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20848
dc.identifier.issn0373-3505
dc.identifier.officialurlhttp://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/282/259
dc.identifier.relatedurlhttp://www.dmi.unict.it/ojs/index.php/lematematiche/index
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58401
dc.issue.number2
dc.journal.titleLe Matematiche
dc.language.isoeng
dc.page.final446
dc.page.initial437
dc.publisherUniversity of Catania
dc.relation.projectIDHPRN-CT-2000-00099
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleProjective moduli space of semistable principal sheaves for a reductive group.
dc.typejournal article
dc.volume.number55
dcterms.referencesA. Borel, Linear algebraic groups, New York: W. A. Benjamin Inc. 1969. J. Cilleruelo - I. Sols, The Severi bound on sections of rank two semistable bundles on a Riemann surface, to appear in Ann. of Math., Nov. 2001. G. Faltings, Moduli stacks for bundles on semistable curves, Math. Ann., 304 (1996), pp. 489–515. D. Gieseker, On the moduli of vector bundles on an algebraic surfaces, Ann. Math., 106 (1977), pp. 45–60. T. Gómez - I. Sols, Stability of conic bundles, Internat. J. Math., 11 (2000), pp. 1027-1055. T. Gómez - I. Sols, Stable tensor fields and moduli space of principal G-sheaves for classical groups, (math. AG/0103150). D. Huybrechts - M. Lehn, Framed modules and their moduli, Internat. J. Math., 6 (1995), pp. 297-324. M. Maruyama, Moduli of stable sheaves. I, J. Math. Kyoto Univ., 17 (1977), pp. 91–126. M. Maruyama, Moduli of stable sheaves. II, J. Math. Kyoto Univ., 18 (1978), pp. 557–614. D. Mumford - J. Fogarty - F. Kirwan, Geometric invariant theory, (Third edition) Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994. M.S. Narasimhan - C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., 82 (1965), pp. 540–567. A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann., 213 (1975), pp. 129–152. A. Ramanathan, Moduli for principal bundles over algebraic curves: I and II, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), pp. 301–326 and pp. 421–449. A. Schmitt, A universal construction for moduli spaces of decorated vector bundles over curves, preprint 2000, math. AG/0006029. C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. Math., 85 (1967), pp. 303–336. C.S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972), pp. 511-556. F. Severi, Sulla classificazione delle rigate algebriche, Rend. Mat., 2 (1941), pp. 1-32. C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S., 79 (1994), pp. 47–129. C. Sorger, Thêta-charactéristiques des courbes tracées sur une surface lisse , J. reine angew. Math., 435 (1993), pp. 83–118.
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols26.pdf
Size:
221.24 KB
Format:
Adobe Portable Document Format

Collections