Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Continuous-Time Spiking Neural Network Paradigm

Citation

Cristini A, Salerno M, Susi G (2015). A Continuous-Time Spiking Neural Network Paradigm. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham.

Abstract

In this work, a novel continuous-time spiking neural network paradigm is presented. Indeed, because of a neuron can fire at any given time, this kind of approach is necessary. For the purpose of developing a simulation tool having such a property, an ad-hoc event-driven method is implemented. A simplified neuron model is introduced with characteristics similar to the classic Leaky Integrate-and-Fire model, but including the spike latency effect. The latency takes into account that the firing of a given neuron is not instantaneous, but occurs after a continuous-time delay. Both excitatory and inhibitory neurons are considered, and simple synaptic plasticity rules are modeled. Nevetheless the chance to customize the network topology, an example with Cellular Neural Network (CNN)-like connections is presented, and some interesting global effects emerging from the simulations are reported.

Research Projects

Organizational Units

Journal Issue

Description

Se deposita la versión corregida y aceptada

Keywords