Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Continuous-Time Spiking Neural Network Paradigm

dc.book.titleAdvances in Neural Networks: Computational and Theoretical Issues
dc.contributor.authorCristini, Alessandro
dc.contributor.authorSalerno, Mario
dc.contributor.authorSusi, Gianluca
dc.contributor.editorBassis, Simone
dc.contributor.editorEsposito, Anna
dc.contributor.editorMorabito, Francesco Carlo
dc.date.accessioned2025-01-28T10:11:32Z
dc.date.available2025-01-28T10:11:32Z
dc.date.issued2015
dc.descriptionSe deposita la versión corregida y aceptada
dc.description.abstractIn this work, a novel continuous-time spiking neural network paradigm is presented. Indeed, because of a neuron can fire at any given time, this kind of approach is necessary. For the purpose of developing a simulation tool having such a property, an ad-hoc event-driven method is implemented. A simplified neuron model is introduced with characteristics similar to the classic Leaky Integrate-and-Fire model, but including the spike latency effect. The latency takes into account that the firing of a given neuron is not instantaneous, but occurs after a continuous-time delay. Both excitatory and inhibitory neurons are considered, and simple synaptic plasticity rules are modeled. Nevetheless the chance to customize the network topology, an example with Cellular Neural Network (CNN)-like connections is presented, and some interesting global effects emerging from the simulations are reported.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationCristini A, Salerno M, Susi G (2015). A Continuous-Time Spiking Neural Network Paradigm. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham.
dc.identifier.doi10.1007/978-3-319-18164-6_6
dc.identifier.isbn9783319181639
dc.identifier.isbn9783319181646
dc.identifier.issn2190-3018
dc.identifier.issn2190-3026
dc.identifier.officialurlhttps://link.springer.com/chapter/10.1007/978-3-319-18164-6_6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116519
dc.language.isoeng
dc.page.final60
dc.page.initial49
dc.publication.placeAlemania
dc.publisherSpringer
dc.relation.ispartofseriesSmart Innovation, Systems and Technologies
dc.rights.accessRightsrestricted access
dc.subject.cdu004.81
dc.subject.keywordNeuron Model
dc.subject.keywordSpike Latency
dc.subject.keywordSpiking Neural Network
dc.subject.keywordSynaptic Plasticity
dc.subject.keywordContinuous-Time Paradigm
dc.subject.keywordEvent-Driven Simulation
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmBioinformática
dc.subject.unesco22 Física
dc.subject.unesco2404 Biomatemáticas
dc.titleA Continuous-Time Spiking Neural Network Paradigm
dc.typebook part
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New - A Continuous-Time Spiking Neural Network Paradigm(8).pdf
Size:
607.39 KB
Format:
Adobe Portable Document Format