A Continuous-Time Spiking Neural Network Paradigm
dc.book.title | Advances in Neural Networks: Computational and Theoretical Issues | |
dc.contributor.author | Cristini, Alessandro | |
dc.contributor.author | Salerno, Mario | |
dc.contributor.author | Susi, Gianluca | |
dc.contributor.editor | Bassis, Simone | |
dc.contributor.editor | Esposito, Anna | |
dc.contributor.editor | Morabito, Francesco Carlo | |
dc.date.accessioned | 2025-01-28T10:11:32Z | |
dc.date.available | 2025-01-28T10:11:32Z | |
dc.date.issued | 2015 | |
dc.description | Se deposita la versión corregida y aceptada | |
dc.description.abstract | In this work, a novel continuous-time spiking neural network paradigm is presented. Indeed, because of a neuron can fire at any given time, this kind of approach is necessary. For the purpose of developing a simulation tool having such a property, an ad-hoc event-driven method is implemented. A simplified neuron model is introduced with characteristics similar to the classic Leaky Integrate-and-Fire model, but including the spike latency effect. The latency takes into account that the firing of a given neuron is not instantaneous, but occurs after a continuous-time delay. Both excitatory and inhibitory neurons are considered, and simple synaptic plasticity rules are modeled. Nevetheless the chance to customize the network topology, an example with Cellular Neural Network (CNN)-like connections is presented, and some interesting global effects emerging from the simulations are reported. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Cristini A, Salerno M, Susi G (2015). A Continuous-Time Spiking Neural Network Paradigm. In: Bassis, S., Esposito, A., Morabito, F. (eds) Advances in Neural Networks: Computational and Theoretical Issues. Smart Innovation, Systems and Technologies, vol 37. Springer, Cham. | |
dc.identifier.doi | 10.1007/978-3-319-18164-6_6 | |
dc.identifier.isbn | 9783319181639 | |
dc.identifier.isbn | 9783319181646 | |
dc.identifier.issn | 2190-3018 | |
dc.identifier.issn | 2190-3026 | |
dc.identifier.officialurl | https://link.springer.com/chapter/10.1007/978-3-319-18164-6_6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/116519 | |
dc.language.iso | eng | |
dc.page.final | 60 | |
dc.page.initial | 49 | |
dc.publication.place | Alemania | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Smart Innovation, Systems and Technologies | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 004.81 | |
dc.subject.keyword | Neuron Model | |
dc.subject.keyword | Spike Latency | |
dc.subject.keyword | Spiking Neural Network | |
dc.subject.keyword | Synaptic Plasticity | |
dc.subject.keyword | Continuous-Time Paradigm | |
dc.subject.keyword | Event-Driven Simulation | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Bioinformática | |
dc.subject.unesco | 22 Física | |
dc.subject.unesco | 2404 Biomatemáticas | |
dc.title | A Continuous-Time Spiking Neural Network Paradigm | |
dc.type | book part | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7 | |
relation.isAuthorOfPublication.latestForDiscovery | 20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- New - A Continuous-Time Spiking Neural Network Paradigm(8).pdf
- Size:
- 607.39 KB
- Format:
- Adobe Portable Document Format