Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states
Loading...
Official URL
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citation
Abstract
Correlations in fluids in nonequilibrium steady states are long range. Hence, finite-size effects have important consequences in the nonequilibrium thermodynamics of fluids. One consequence is that nonequilibrium temperature fluctuations induce nonequilibrium Casimir-like pressures proportional to the square of the temperature gradient. Hence, fluctuations cause a breakdown of the concept of local thermal equilibrium. Furthermore, transport coefficients become dependent on boundary conditions and on gravity. Thus nonequilibrium fluctuations affect some traditional concepts in nonequilibrium thermodynamics.
Description
© 2014 American Physical Society. The research was supported by the US National Science Foundation under Grant No. DMR-09-01907. We thank M. L. Huber, E. W. Lemmon, and R. A. Perkins of the US National Institute of Standards and Technology for providing us with relevant thermodynamic-property information for the evaluation of the NE pressures. In addition, J.O.Z. acknowledges support from the UCM/Santander Research Grant No. PR6/13-18867.