Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states
dc.contributor.author | Kirkpatrick, T. R. | |
dc.contributor.author | Ortiz De Zárate Leira, José María | |
dc.contributor.author | Sengers, J. V. | |
dc.date.accessioned | 2023-06-19T13:26:15Z | |
dc.date.available | 2023-06-19T13:26:15Z | |
dc.date.issued | 2014-02-28 | |
dc.description | © 2014 American Physical Society. The research was supported by the US National Science Foundation under Grant No. DMR-09-01907. We thank M. L. Huber, E. W. Lemmon, and R. A. Perkins of the US National Institute of Standards and Technology for providing us with relevant thermodynamic-property information for the evaluation of the NE pressures. In addition, J.O.Z. acknowledges support from the UCM/Santander Research Grant No. PR6/13-18867. | |
dc.description.abstract | Correlations in fluids in nonequilibrium steady states are long range. Hence, finite-size effects have important consequences in the nonequilibrium thermodynamics of fluids. One consequence is that nonequilibrium temperature fluctuations induce nonequilibrium Casimir-like pressures proportional to the square of the temperature gradient. Hence, fluctuations cause a breakdown of the concept of local thermal equilibrium. Furthermore, transport coefficients become dependent on boundary conditions and on gravity. Thus nonequilibrium fluctuations affect some traditional concepts in nonequilibrium thermodynamics. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | US National Science Foundation | |
dc.description.sponsorship | UCM/Santander Research | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27257 | |
dc.identifier.doi | 10.1103/PhysRevE.89.022145 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevE.89.022145 | |
dc.identifier.relatedurl | http://arxiv.org/pdf/1401.1339v2.pdf | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33688 | |
dc.issue.number | 2 | |
dc.journal.title | Physical Review E | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | DMR-09-01907 | |
dc.relation.projectID | PR6/13-18867 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Asymptotic time behavior | |
dc.subject.keyword | Transport-coefficients | |
dc.subject.keyword | Light-scattering | |
dc.subject.keyword | Convective instability | |
dc.subject.keyword | Diffusion-coefficient | |
dc.subject.keyword | Burnett coefficients | |
dc.subject.keyword | Nonlinear transport | |
dc.subject.keyword | Rayleigh-scattering | |
dc.subject.keyword | Giant fluctuations | |
dc.subject.keyword | Polymer-solution | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states | |
dc.type | journal article | |
dc.volume.number | 89 | |
dcterms.references | [1] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [2] H. B. G. Casimir, Proc. Koninklijke Nederlandse Acad. Wetenschappen B 51, 793 (1948). [3] V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon, Oxford, 1997). [4] I. E. Dzyalosshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961). [5] J. C. Munday and F. Capasso, Int. J. Mod. Phys. A 25, 2252 (2010). [6] A. Gambassi, C. Hertlein, L. Helden, C. Bechinger, and S. Dietrich, Europhys. News 40, 18 (2009). [7] M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris B 287, 207 (1978). [8] M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). [9] M. Krech, J. Phys. Condens. Matter 11, R391 (1999). [10] M. Krech, Phys. Rev. E 56, 1642 (1997). [11] A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009). [12] S. Rafai, D. Bonn, and J. Meunier, Physica A 386, 31 (2007). [13] R. B. Jones, Physica A 105, 395 (1981). [14] D. Y. C. Chan and L. R. White, Physica A 122, 505 (1983). [15] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [16] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971). [17] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [18] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). [19] Y. Pomeau and P. Résibois, Phys. Rep. 19, 63 (1975). [20] T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, J. Stat. Phys. 109, 373 (2002). [21] L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968). [22] K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970). [23] J. V. Sengers, Int. J. Thermophys. 6, 203 (1985). [24] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [25] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 950 (1982). [26] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 972 (1982). [27] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [28] B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). [29] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [30] P. N. Segr`e, R.W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [31] W.B.Li, P. N. Segrè, R.W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). [32] J. M. Ortiz de Zárate, R. Pérez Cordón, and J.V. Sengers, Physica A 291, 113 (2001). [33] J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [34] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). [35] M. E. Fisher, J. Math. Phys. 5, 944 (1964). [36] J. J. Brey, J. Chem. Phys. 79, 4585 (1983). [37] M. H. Ernst and J. R. Dorfman, J. Stat. Phys. 12, 311 (1975). [38] P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). [39] J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25 (2001). [40] J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 66, 036305 (2002). [41] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [42] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [43] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974). [44] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965). [45] A. Onuki, Phys. Rev. E 55, 403 (1997). [46] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press/Dover, Oxford, 1981). [47] E. W. Lemmon, M. L. Huber, and M. O. McLinden, Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP); Version 9.0 (Standards Reference Data, National Institute of Standards and Technology, Gaithersburg, MD, 2011). [48] D. M. Danchev, Phys. Rev. E 58, 1455 (1998). [49] R. A. Perkins (private communication). [50] R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, Opt. Express 19, 10571 (2011). [51] A. Regazetti, M. Hoyos, and M. Martin, J. Phys. Chem. B 108, 15285 (2004). [52] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [53] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [54] T. R. Kirkpatrick and E. G. D. Cohen, Phys. Lett. A 88, 44 (1982). [55] T. R. Kirkpatrick and E. G. D. Cohen, J. Stat. Phys. 33, 639 (1983). [56] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [57] J. W. Dufty and J. A. McLennan, Phys. Rev. A 9, 1266 (1974). [58] C. K. Wong, J. A. McLennan, M. Lindenfeld, and J. W. Dufty, J. Chem. Phys. 68, 1563 (1978). [59] R. K. Standish, Phys. Rev. E 60, 5175 (1999). [60] I. M. de Schepper, H. van Beijeren, and M. H. Ernst, Physica 75, 1 (1974). [61] J. D. Foch, Ph.D. thesis, Rockefeller University, 1967. [62] J. A. McLennan, Phys. Rev. A 8, 1479 (1973). [63] A. Donev, T. G. Fai, and E. Vanden-Eijnden, arXiv:1312.1894 [J. Stat. Mech. (to be published)]. [64] M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, J. Stat. Phys. 18, 237 (1978). [65] J.Kestin and J. R. Dorfman, A Course on Statistical Thermodynamics (Academic, New York, 1971). [66] J. C. Nieuwoudt, T.Kirkpatrick, and J. R.Dorfman, J. Stat. Phys. 34, 203 (1984). [67] D. Brogioli and A. Vailati, Phys. Rev. E 63, 012105 (2000). [68] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [69] A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). [70] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). [71] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). [72] D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Matter 12, A39 (2000). [73] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio, Nat. Commun. 2, 290 (2011). [74] D. Bedeaux and P. Mazur, Physica 73, 431 (1974). [75] D. Bedeaux and P. Mazur, Physica 75, 79 (1974). [76] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [77] H. Wada and S.-i. Sasa, Phys. Rev. E 67, 065302(R) (2003). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d2b809b1-3ba2-407e-add2-8b8251e306ba | |
relation.isAuthorOfPublication.latestForDiscovery | d2b809b1-3ba2-407e-add2-8b8251e306ba |