Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states

dc.contributor.authorKirkpatrick, T. R.
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorSengers, J. V.
dc.date.accessioned2023-06-19T13:26:15Z
dc.date.available2023-06-19T13:26:15Z
dc.date.issued2014-02-28
dc.description© 2014 American Physical Society. The research was supported by the US National Science Foundation under Grant No. DMR-09-01907. We thank M. L. Huber, E. W. Lemmon, and R. A. Perkins of the US National Institute of Standards and Technology for providing us with relevant thermodynamic-property information for the evaluation of the NE pressures. In addition, J.O.Z. acknowledges support from the UCM/Santander Research Grant No. PR6/13-18867.
dc.description.abstractCorrelations in fluids in nonequilibrium steady states are long range. Hence, finite-size effects have important consequences in the nonequilibrium thermodynamics of fluids. One consequence is that nonequilibrium temperature fluctuations induce nonequilibrium Casimir-like pressures proportional to the square of the temperature gradient. Hence, fluctuations cause a breakdown of the concept of local thermal equilibrium. Furthermore, transport coefficients become dependent on boundary conditions and on gravity. Thus nonequilibrium fluctuations affect some traditional concepts in nonequilibrium thermodynamics.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUS National Science Foundation
dc.description.sponsorshipUCM/Santander Research
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27257
dc.identifier.doi10.1103/PhysRevE.89.022145
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.89.022145
dc.identifier.relatedurlhttp://arxiv.org/pdf/1401.1339v2.pdf
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33688
dc.issue.number2
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDDMR-09-01907
dc.relation.projectIDPR6/13-18867
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordAsymptotic time behavior
dc.subject.keywordTransport-coefficients
dc.subject.keywordLight-scattering
dc.subject.keywordConvective instability
dc.subject.keywordDiffusion-coefficient
dc.subject.keywordBurnett coefficients
dc.subject.keywordNonlinear transport
dc.subject.keywordRayleigh-scattering
dc.subject.keywordGiant fluctuations
dc.subject.keywordPolymer-solution
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleFluctuation-induced pressures in fluids in thermal nonequilibrium steady states
dc.typejournal article
dc.volume.number89
dcterms.references[1] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [2] H. B. G. Casimir, Proc. Koninklijke Nederlandse Acad. Wetenschappen B 51, 793 (1948). [3] V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon, Oxford, 1997). [4] I. E. Dzyalosshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961). [5] J. C. Munday and F. Capasso, Int. J. Mod. Phys. A 25, 2252 (2010). [6] A. Gambassi, C. Hertlein, L. Helden, C. Bechinger, and S. Dietrich, Europhys. News 40, 18 (2009). [7] M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris B 287, 207 (1978). [8] M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). [9] M. Krech, J. Phys. Condens. Matter 11, R391 (1999). [10] M. Krech, Phys. Rev. E 56, 1642 (1997). [11] A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009). [12] S. Rafai, D. Bonn, and J. Meunier, Physica A 386, 31 (2007). [13] R. B. Jones, Physica A 105, 395 (1981). [14] D. Y. C. Chan and L. R. White, Physica A 122, 505 (1983). [15] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [16] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971). [17] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [18] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). [19] Y. Pomeau and P. Résibois, Phys. Rep. 19, 63 (1975). [20] T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, J. Stat. Phys. 109, 373 (2002). [21] L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968). [22] K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970). [23] J. V. Sengers, Int. J. Thermophys. 6, 203 (1985). [24] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [25] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 950 (1982). [26] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 972 (1982). [27] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [28] B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). [29] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [30] P. N. Segr`e, R.W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [31] W.B.Li, P. N. Segrè, R.W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). [32] J. M. Ortiz de Zárate, R. Pérez Cordón, and J.V. Sengers, Physica A 291, 113 (2001). [33] J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [34] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). [35] M. E. Fisher, J. Math. Phys. 5, 944 (1964). [36] J. J. Brey, J. Chem. Phys. 79, 4585 (1983). [37] M. H. Ernst and J. R. Dorfman, J. Stat. Phys. 12, 311 (1975). [38] P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). [39] J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25 (2001). [40] J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 66, 036305 (2002). [41] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [42] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [43] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974). [44] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965). [45] A. Onuki, Phys. Rev. E 55, 403 (1997). [46] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press/Dover, Oxford, 1981). [47] E. W. Lemmon, M. L. Huber, and M. O. McLinden, Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP); Version 9.0 (Standards Reference Data, National Institute of Standards and Technology, Gaithersburg, MD, 2011). [48] D. M. Danchev, Phys. Rev. E 58, 1455 (1998). [49] R. A. Perkins (private communication). [50] R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, Opt. Express 19, 10571 (2011). [51] A. Regazetti, M. Hoyos, and M. Martin, J. Phys. Chem. B 108, 15285 (2004). [52] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [53] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [54] T. R. Kirkpatrick and E. G. D. Cohen, Phys. Lett. A 88, 44 (1982). [55] T. R. Kirkpatrick and E. G. D. Cohen, J. Stat. Phys. 33, 639 (1983). [56] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [57] J. W. Dufty and J. A. McLennan, Phys. Rev. A 9, 1266 (1974). [58] C. K. Wong, J. A. McLennan, M. Lindenfeld, and J. W. Dufty, J. Chem. Phys. 68, 1563 (1978). [59] R. K. Standish, Phys. Rev. E 60, 5175 (1999). [60] I. M. de Schepper, H. van Beijeren, and M. H. Ernst, Physica 75, 1 (1974). [61] J. D. Foch, Ph.D. thesis, Rockefeller University, 1967. [62] J. A. McLennan, Phys. Rev. A 8, 1479 (1973). [63] A. Donev, T. G. Fai, and E. Vanden-Eijnden, arXiv:1312.1894 [J. Stat. Mech. (to be published)]. [64] M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, J. Stat. Phys. 18, 237 (1978). [65] J.Kestin and J. R. Dorfman, A Course on Statistical Thermodynamics (Academic, New York, 1971). [66] J. C. Nieuwoudt, T.Kirkpatrick, and J. R.Dorfman, J. Stat. Phys. 34, 203 (1984). [67] D. Brogioli and A. Vailati, Phys. Rev. E 63, 012105 (2000). [68] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [69] A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). [70] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). [71] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). [72] D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Matter 12, A39 (2000). [73] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio, Nat. Commun. 2, 290 (2011). [74] D. Bedeaux and P. Mazur, Physica 73, 431 (1974). [75] D. Bedeaux and P. Mazur, Physica 75, 79 (1974). [76] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [77] H. Wada and S.-i. Sasa, Phys. Rev. E 67, 065302(R) (2003).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Ortiz02libre.pdf
Size:
301.04 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Ortiz02preprint.pdf
Size:
335.78 KB
Format:
Adobe Portable Document Format

Collections