Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Jordan–Brans–Dicke quantum wormholes and Coleman’s mechanism

Loading...
Thumbnail Image

Full text at PDC

Publication date

1993

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We consider the quantum gravity and cosmology of a Jordan-Brans-Dicke theory, predicted by string effective actions. We study its canonical formalism and find that the constraint algebra is that of general relativity, as a consequence of the general covariance of scalar-tensor theories. We also analyze the problem of boundary conditions and propose that they must be imposed in the Jordan frame, in which particles satisfy the strong equivalence principle. Specifically, we discuss both Hartle-Hawking and wormhole boundary conditions in the context of quantum cosmology. We find quantum wormhole solutions for Jordan-Brans-Dicke gravity even in the absence of matter. Wormholes may affect the constants of nature and, in particular, the Brans-Dicke parameter. Following Coleman's mechanism, we find a probability distribution which is strongly peaked at zero cosmological constant and infinite Brans-Dicke parameter. That is, we recover general relativity as the effective low energy theory of gravity.

Research Projects

Organizational Units

Journal Issue

Description

© Elsevier. We would like to thank Pedro González–Díaz, Guillermo Mena Marugán and Mariano Quirós for a careful reading of the manuscript and valuable discussions. We also thank Andrei Linde for clarifying our conclusions on extended inflation.

Unesco subjects

Keywords

Collections