Teaching the nature of science through biodiesel synthesis from waste cooking oil: a literature review with experimental insights
dc.contributor.author | Peña Martínez, Juan | |
dc.contributor.author | Beltrán-Martínez, Jessica | |
dc.contributor.author | Cano Ortiz, Ana | |
dc.contributor.author | Rosales Conrado, Noelia | |
dc.date.accessioned | 2025-06-02T10:41:55Z | |
dc.date.available | 2025-06-02T10:41:55Z | |
dc.date.issued | 2025 | |
dc.description | References bibliográficas: • Kumar, A.; Bhayana, S.; Singh, P.K.; Tripathi, A.D.; Paul, V.; Balodi, V.; Agarwal, A. Valorization of used cooking oil: Challenges, current developments, life cycle assessment and future prospects. Discov. Sustain. 2025, 6, 119. [Google Scholar] [CrossRef] • Foo, W.H.; Koay, S.S.N.; Chia, S.R.; Chia, W.Y.; Tang, D.Y.Y.; Nomanbhay, S.; Chew, K.W. Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel 2022, 324, 124539. [Google Scholar] [CrossRef] • Sheinbaum-Pardo, C.; Calderón-Irazoque, A.; Ramírez-Suárez, M. Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 2013, 56, 230–238. [Google Scholar] [CrossRef] • Caporusso, A.; Radice, M.; Biundo, A.; Gorgoglione, R.; Agrimi, G.; Pisano, I. Waste cooking oils as a sustainable feedstock for bio-based application: A systematic review. J. Biotechol. 2025, 400, 48–65. [Google Scholar] [CrossRef] • Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef] • Patel, K.; Singh, S.K. Sustainable biodiesel from used cooking oil: A comparative life cycle, energy, and uncertainty analysis. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef] • EN 14214:2003; European Committee for Standardization—Automotive Fuels—Fatty Acid Methyl Esters (FAME) for Diesel Engines—Requirements and Test Methods. CEN: Brussels, Belgium, 2003. • ASTM D6751-23a; Standard Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2023. • Brahma, S.; Nath, B.; Basumatary, B.; Das, B.; Saikia, P.; Patir, K.; Basumatary, S. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. 2022, 10, 100284. [Google Scholar] [CrossRef] • Demirbas, A. Political, economic and environmental impacts of biofuels: A review. Appl. Energy 2009, 86, S108–S117. [Google Scholar] [CrossRef] • Ramos, M.; Dias, A.P.S.; Puna, J.F.; Gomes, J.; Bordado, J.C. Biodiesel production processes and sustainable raw materials. Energies 2019, 12, 4408. [Google Scholar] [CrossRef] • Alptekin, E.; Canakci, M. Characterization of the key fuel properties of methyl ester–diesel fuel blends. Fuel 2009, 88, 75–80. [Google Scholar] [CrossRef] • Lopresto, C.G.; De Paola, M.G.; Calabrò, V. Importance of the properties, collection, and storage of waste cooking oils to produce high-quality biodiesel—An overview. Biomass Bioenergy 2024, 189, 107363. [Google Scholar] [CrossRef] • Knoerzer, T.A.; Hill, E.M.; Davis, T.A.; Iacono, S.T.; Johnson, J.E.; Balaich, G.J. Comparative analysis of fuel composition and physical properties of biodiesel, diesel, kerosene, and jet fuel. J. Chem. Educ. 2018, 95, 1821–1826. [Google Scholar] [CrossRef] • Fukuda, H.; Kond, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef] • Derobertis, F.; Leone, M.S.; Mesto, E.; Schingaro, E.; Porfido, C.; Ditaranto, N.; Mali, M.; Dell’Anna, M.M.; Mastrorilli, P. Microwave assisted biodiesel production from waste cooking oil using steel slags as catalyst. Eur. J. Inorg. Chem. 2024, 27, e202400375. [Google Scholar] [CrossRef] • Kerstiens, G.A. The impact of Nature of Science Instruction on the Chemistry Laboratory Experience. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2019. [Google Scholar] • Lederman, N.G. Nature of Science: Past, present, and future. In Handbook of Research on Science Education; Abell, S.K., Lederman, N.G., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2007; pp. 831–879. [Google Scholar] • Khishfe, R. Improving students’ conceptions of Nature of Science: A review of the literature. Sci. Educ. 2023, 32, 1887–1931. [Google Scholar] [CrossRef] • Bell, R.L.; Matkins, J.J.; Gansneder, G.M. Impacts of contextual and explicit instruction on preservice elementary teachers’ understandings of the nature of science. J. Res. Sci. Teach. 2011, 48, 414–436. [Google Scholar] [CrossRef] • Hodson, D.; Wong, S.L. From the horse’s mouth: Why scientists’ views are crucial to nature of science understanding. Int. J. Sci. Educ. 2014, 36, 2639–2665. [Google Scholar] [CrossRef] • Lederman, N.G.; Abd-El-Khalick, F.; Bell, R.L.; Schwartz, R.S. Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. J. Res. Sci. Teach. 2002, 39, 497–521. [Google Scholar] [CrossRef] • Khishfe, R.; Lederman, N. Teaching nature of science within a controversial topic: Integrated versus nonintegrated. J. Res. Sci. Teach. 2006, 43, 395–418. [Google Scholar] [CrossRef] • McDonald, C.V. The influence of explicit nature of science and argumentation instruction on preservice primary teachers’ views of nature of science. J. Res. Sci. Teach. 2010, 47, 1137–1164. [Google Scholar] [CrossRef] • Abd-El-Khalick, F.; Bell, R.L.; Lederman, N.G. The nature of science and instructional practice: Making the unnatural natural. Sci. Educ. 1998, 82, 417–436. [Google Scholar] [CrossRef] • Khishfe, R.; Abd-El-Khalick, F. The influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. J. Res. Sci. Teach. 2002, 39, 551–578. [Google Scholar] [CrossRef] • Rudge, D.W.; Howe, E.M. An explicit and reflective approach to the use of history to promote understanding of the nature of science. Sci. Educ. 2009, 18, 561–580. [Google Scholar] [CrossRef] • Tytler, R. Socio-Scientific Issues, Sustainability and Science Education. Res. Sci. Educ. 2012, 42, 155–163. [Google Scholar] [CrossRef] • Clough, M.P. Teaching and Learning About the Nature of Science. Sci. Educ. 2018, 27, 1–5. [Google Scholar] [CrossRef] • Erduran, S.; Dagher, Z.R.; McDonald, C.V. Contributions of the Family Resemblance Approach to Nature of Science in Science Education. Sci. Educ. 2019, 28, 311–328. [Google Scholar] [CrossRef] • Allchin, D. Evaluating knowledge of the nature of (whole) science. Sci. Educ. 2011, 95, 518–542. [Google Scholar] [CrossRef] • Matthews, M.R. Changing the focus: From nature of science to features of science. In Advances in Nature of Science Research; Khine, M.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–26. [Google Scholar] • Erduran, S.; Dagher, Z.R. Reconceptualizing the Nature of Science for Science Education: Scientific Knowledge, Practices and Other Family Categories; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] • Irzik, G.; Nola, R. New directions for nature of science research. In International Handbook of Research in History, Philosophy and Science Teaching; Matthews, M., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 999–1021. [Google Scholar] • Cheung, K.K.C.; Erduran, S. A systematic review of research on family resemblance approach to Nature of Science in Science Education. Sci. Educ. 2023, 32, 1637–1673. [Google Scholar] [CrossRef] • Keppeler, N.; Novaki, L.P.; El Seoud, O.A. Teaching the undergraduate laboratory during pandemic time: Using the synthesis of a biodiesel model to demonstrate aspects of green chemistry. J. Chem. Educ. 2021, 98, 3962–3967. [Google Scholar] [CrossRef] • Leibfarth, F.A.; Russell, M.G.; Langley, D.M.; Seo, H.; Kelly, L.P.; Carney, D.W.; Sello, J.K.; Jamison, T.F. Continuous-flow chemistry in undergraduate education: Sustainable conversion of reclaimed vegetable oil into biodiesel. J. Chem. Educ. 2018, 95, 1371–1375. [Google Scholar] [CrossRef] • Georgiou, Y.; Kyza, E.A. Fostering chemistry students’ scientific literacy for responsible citizenship through socio-scientific inquiry-based learning (SSIBL). Sustainability 2023, 15, 6442. [Google Scholar] [CrossRef] • Nida, S.; Marsuki, M.F.; Eilks, I. Palm-oil-based biodiesel in Indonesia: A case study on a socioscientific issue that engages students to learn chemistry and its impact on Society. J. Chem. Educ. 2021, 98, 2536–2548. [Google Scholar] [CrossRef] • Armstrong, L.B.; Rivas, M.C.; Zhou, Z.; Irie, L.M.; Kerstiens, G.A.; Robak, M.T.; Douskey, M.C.; Baranger, A.M. Developing a green chemistry focused general chemistry laboratory curriculum: What do students understand and value about green chemistry? J. Chem. Educ. 2019, 96, 2410–2419. [Google Scholar] [CrossRef] • Jin, G.; Bierma, T. Sustainability education and civic engagement through integration of undergraduate research with Service Learning. Sci. Educ. Civ. Engagem. 2023, 15, 17–21. [Google Scholar] • Neiles, K.Y.; Bowers, G.B.; Chase, D.T.; VerMeulen, A.; Hovland, D.E.; Bresslour-Rashap, E.; Eller, L.; Koch, A.S. Teaching collaborations and scientific practices through a vertically scaffolded biodiesel laboratory experience. J. Chem. Educ. 2019, 96, 1988–1997. [Google Scholar] [CrossRef] • Hupp, A.M. Incorporating chemometric methods in the undergraduate curriculum: A problem set activity for an upper-level analytical elective course. J. Chem. Educ. 2023, 100, 1377–1381. [Google Scholar] [CrossRef] • Yang, J.; Xu, C.; Li, B.; Ren, G.; Wang, L. Synthesis and determination of biodiesel: An experiment for high school chemistry laboratory. J. Chem. Educ. 2013, 90, 1362–1364. [Google Scholar] [CrossRef] • Khamhaengpol, A.; Phewphong, S.; Chuamchaitrakool, P. STEAM activity on biodiesel production: Encouraging creative thinking and basic science process skills of high school students. J. Chem. Educ. 2022, 99, 736–744. [Google Scholar] [CrossRef] • Bladt, D.; Murray, S.; Gitch, B.; Trout, H.; Liberko, C. Acid-catalyzed preparation of biodiesel from waste vegetable oil: An experiment for the undergraduate organic chemistry laboratory. J. Chem. Educ. 2011, 88, 201–203. [Google Scholar] [CrossRef] • Clarke, N.R.; Casey, J.P.; Brown, E.D.; Oneyma, E.; Donaghy, K.J. Preparation and viscosity of biodiesel from new and used vegetable oil. An inquiry-based environmental chemistry laboratory. J. Chem. Educ. 2006, 83, 257–259. [Google Scholar] [CrossRef] • El Seoud, O.A.; Keppeler, N.; Sandrini, D.M.F.; Morselli, G.R. Active learning in the undergraduate chemistry laboratory: Synthesis of biodiesel from an Amazon region oil (Babassu): Keep it simple! J. Chem. Educ. 2023, 100, 2926–2934. [Google Scholar] [CrossRef] • Kim, J. Production of biodiesel from waste cooking oil: A guided inquiry chemistry laboratory activity at a two-year college. J. Chem. Educ. 2022, 99, 4162–4168. [Google Scholar] [CrossRef] • ASTM D446-24; Standard Specifications and Operating Instructions for Glass Capillary Kinematic Viscometers. ASTM International: West Conshohocken, PA, USA, 2024. • ASTM D1298-12b(2017); Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. ASTM International: West Conshohocken, PA, USA, 2017. • Vicente, G.; Martínez, M.; Aracil, J. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 2004, 92, 297–305. [Google Scholar] [CrossRef] • Darnoko, D.; Cheryan, M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 2000, 77, 1263–1267. [Google Scholar] [CrossRef] • Coteron, A.; Vicente, G.; Martínez, M.; Aracil, J. Biodiesel production from vegetable oils. Influence of catalysts and operating conditions. Recent. Res. Dev. Oil Chem. 1997, 1, 109–114. [Google Scholar] • Zhang, Y. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 2003, 89, 1–16. [Google Scholar] [CrossRef] • Peña Romero, A.; Costa, J.B.; Castel-Maroteaux, I.; Chulia, D. Statistical optimization of a controlled release formulation obtained by a double compression process: Application of an Hadamard matrix and a factorial design. Drug Dev. Ind. Pharm. 1989, 15, 2419–2440. [Google Scholar] [CrossRef] • Balasubramanian, K. Characterization of Hadamard matrices. Mol. Phys. 1993, 78, 1309–1329. [Google Scholar] [CrossRef] • Llabrés, M.; Fariña, J.B. Design and evaluation of sustained-release tablets of Lithium in a fat matrix and its bioavailability in humans. J. Pharm. Sci. 1991, 80, 1012–1016. [Google Scholar] [CrossRef] • Wehrle, P.; Korner, D.; Benita, S. Sequential statistical optimization of a positively-charged submicron emulsion of miconazole. Pharm. Dev. Technol. 1996, 1, 97–111. [Google Scholar] [CrossRef] • Baro, M.; Sánchez, E.; Delgado, A.; Perera, A.; Évora, C. In vitro–in vivo characterization of gentamicin bone implants. J. Control. Release 2002, 83, 353–364. [Google Scholar] [CrossRef] [PubMed] • Vasiljevic, D.; Djuris, J.; Jakimenko, S.; Ibric, S. Application of the fractional factorial design in multiple W/O/W emulsions. J. Dispers. Sci. Technol. 2017, 38, 1732–1737. [Google Scholar] [CrossRef] | |
dc.description.abstract | This work reviews the use of biodiesel synthesis experiments in science education, emphasising their potential for explicit nature of science (NOS) teaching. Through a literature review and experimental insights, it highlights how transesterification of waste cooking oil (WCO) with a basic catalyst can serve as an educational tool. While biodiesel reaction conditions are well-documented, this study presents them in a pedagogical context. Simple viscosity and density measurements illustrate empirical analysis, while a design of experiments (DoE) approach using a Hadamard matrix introduces systematic optimisation and scientific reasoning. By integrating biodiesel synthesis with explicit NOS instruction, this work provides educators with a framework to foster critical thinking and a deeper understanding of scientific inquiry. Additionally, this approach aligns with green chemistry principles and resource efficiency, reinforcing the broader relevance of sustainable chemistry. | |
dc.description.department | Depto. de Didáctica de las Ciencias Experimentales , Sociales y Matemáticas | |
dc.description.faculty | Fac. de Educación | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Peña-Martínez, J., Beltrán-Martínez, J., Cano-Ortiz, A., & Rosales-Conrado, N. (2025). Teaching the Nature of Science Through Biodiesel Synthesis from Waste Cooking Oil: A Literature Review with Experimental Insights. Sustainable Chemistry, 6(2), 15. https://doi.org/10.3390/suschem6020015 | |
dc.identifier.doi | 10.3390/suschem6020015 | |
dc.identifier.issn | 2673-4079 | |
dc.identifier.officialurl | https://doi.org/10.3390/suschem6020015 | |
dc.identifier.relatedurl | https://www.mdpi.com/2673-4079/6/2/15 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/120753 | |
dc.issue.number | 15 | |
dc.journal.title | Sustainable Chemistry | |
dc.language.iso | eng | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 372.85 | |
dc.subject.cdu | 37.02 | |
dc.subject.cdu | 665 | |
dc.subject.cdu | 001.891.5 | |
dc.subject.keyword | Sustainable chemistry education | |
dc.subject.keyword | Biodiesel | |
dc.subject.keyword | Waste cooking oils | |
dc.subject.keyword | Nature of science | |
dc.subject.ucm | Ciencias Sociales | |
dc.subject.ucm | Enseñanza de las ciencias | |
dc.subject.ucm | Aceites y grasas | |
dc.subject.ucm | Educación | |
dc.subject.ucm | Química | |
dc.subject.unesco | 23 Química | |
dc.subject.unesco | 5801.07 Métodos Pedagógicos | |
dc.title | Teaching the nature of science through biodiesel synthesis from waste cooking oil: a literature review with experimental insights | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7a1a0bea-5336-46a9-abdb-7b043459b994 | |
relation.isAuthorOfPublication | 173c66c2-2eac-42e5-9c4b-cbb5245dd98c | |
relation.isAuthorOfPublication | e5625011-ba32-4a14-9ba0-c9305cb5d68e | |
relation.isAuthorOfPublication.latestForDiscovery | 7a1a0bea-5336-46a9-abdb-7b043459b994 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Teaching the Nature of Science Through Biodiesel Synthesis.pdf
- Size:
- 717.05 KB
- Format:
- Adobe Portable Document Format