Exploring Low-Cost Platforms for Automatic Chess Digitization

dc.contributor.authorMallasén Quintana, David
dc.contributor.authorBelda Beneyto, Maria José
dc.contributor.authorDel Barrio García, Alberto Antonio
dc.contributor.authorCastro Rodríguez, Fernando
dc.contributor.authorOlcoz Herrero, Katzalin
dc.contributor.authorPrieto Matías, Manuel
dc.date.accessioned2025-11-07T15:28:35Z
dc.date.available2025-11-07T15:28:35Z
dc.date.issued2025-05-05
dc.description.abstractAutomatic digitization of chess games through computer vision poses a considerable technological challenge. This capability holds significant appeal for tournament organizers and both amateur and professional players, enabling them to broadcast over-the-board (OTB) games online or facilitate in-depth analysis with chess engines. While existing research provides encouraging results, there’s an ongoing demand to enhance recognition accuracy and minimize processing delays, particularly when leveraging affordable hardware. In our study, we adapted these techniques specifically for cost-effective single-board computers like the Nvidia Jetson Nano. Our framework combines a swift chessboard detection method with a Convolutional Neural Network for piece recognition. Notably, it can interpret an image of a chessboard setup in under a second, achieving accuracies of 92% in piece identification and 95% in board detection. Furthermore, we assessed a custom open-hardware platform equipped with affordable, low-power RISC-V processors. On their own, these processors were inadequate for realtime tasks. However, when paired with a systolic array accelerator, their performance significantly improved, yielding promising results in both piece classification and board detection.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMCIN/AEI
dc.description.sponsorshipERDF A way of making Europe
dc.description.statuspub
dc.identifier.citationD. Mallasén, M.J. Belda, A.A. del Barrio, F. Castro, K. Olcoz and M. Prieto-Matias. Exploring Low-Cost Platforms for Automatic Chess Digitization. Journal of Computer Science & Technology, vol. 25, no. 1, pp. 1-15, 2025.
dc.identifier.doi10.24215/16666038.25.e01
dc.identifier.officialurlhttps://dx.doi.org/10.24215/16666038.25.e01
dc.identifier.relatedurlhttps://journal.info.unlp.edu.ar/JCST/article/view/3398
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125900
dc.issue.number1
dc.journal.titleJournal of Computer Science & Technology
dc.language.isoeng
dc.page.final15
dc.page.initial1
dc.publisherUniversidad Nacional de La Plata
dc.relation.projectIDPID2021-123041OBI00
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126576NB-I00/ES/SOFTWARE DE SISTEMA PARA ARQUITECTURAS Y APLICACIONES DE NUEVA GENERACION/
dc.rights.accessRightsopen access
dc.subject.keywordAcceleration
dc.subject.keywordChess pieces classification
dc.subject.keywordComputer vision
dc.subject.keywordNeural networks
dc.subject.keywordRISC-V
dc.subject.ucmHardware
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleExploring Low-Cost Platforms for Automatic Chess Digitization
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublication067c0c14-77ee-44bc-9133-2905f3678b6d
relation.isAuthorOfPublication252b344b-4510-4086-ba0a-79a5c3290b94
relation.isAuthorOfPublication53f86d34-b560-4105-a0bc-a8d1994153ab
relation.isAuthorOfPublication9aac3e41-2993-45aa-b0e1-7bae1dacd982
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublication5d3f6717-1495-4217-853c-8c9c75d56620
relation.isAuthorOfPublication.latestForDiscovery067c0c14-77ee-44bc-9133-2905f3678b6d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exploring_Low-Cost_Platforms.pdf
Size:
7.31 MB
Format:
Adobe Portable Document Format

Collections