Microstructural characterization by electron backscatter diffraction of a hot worked Al-Cu-Mg alloy

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science SA
Google Scholar
Research Projects
Organizational Units
Journal Issue
Hot torsion tests to fracture to simulate thermomechanical processing were carried out on a solution-treated Al-Cu-Mg alloy (Al 2024-T351) at constant temperature. Torsion tests were conducted in the range 278-467 degrees C, and at two strain rates, 2.1 and 4.5 s(-1). Electron backscatter diffraction (EBSD) was employed to characterize the microtexture and microstructure before and after testing. The microstructural evolution during torsion deformation at different temperatures and strain rate conditions determines the mechanical properties at room temperature of the Al 2024 alloy since grain refining, dynamic precipitation and precipitate coalescence occur during the torsion test. These mechanical properties were measured by Vickers microhardness tests. At 408 degrees C and 2.1 s(-1) the optimum combination of solid solution and incipient precipitation gives rise to maximum ductility and large fraction of fine and misoriented grains (f(HAB) = 54%). In contrast, the increase in test temperature to 467 degrees C produces a sharp decrease in ductility, attributed to the high proportion of alloying elements in solid solution. Both the stress-strain flow curves obtained by torsion tests and the final microstructures are a consequence of recovery phenomena and the dynamic nature of the precipitation process taking place during deformation.
© 2010 Elsevier B.V. All rights reserved. Financial support from CICYT (Project MAT2009-14452) is gratefully acknowledged. C.M. Cepeda-Jimenez thanks the Spanish National Research Council (CSIC) for a I3P contract. We also thank F.F. Gonzalez-Rodriguez for assistance during hot torsion. Finally, an especial mention in memory of P.J. Gonzalez-Aparicio for his help and assistance with electron microscopy during all these years is made.
Unesco subjects
[1] M. Ueki, S. Horie, T. Nakamura, J. Mech. Work. technol. 11 (1985) 365–376. [2] F.C. Liu, B.L. Xiao, K. Wang, Z.Y. Ma, Mater. Sci. Eng. A 527 (2010) 4191–4196. [3] P. Cavaliere, J. Light Metal 2 (2002) 247–252. [4] H. Zhang, G.Y. Lin, D.S. Peng, J. Mater. Process. Technol. 148 (2004) 245–249. [5] G.Y. Lin, Z.F. Zhang, D.S. Peng, J. Zhou, Acta Metall. Sin. 21 (2008) 109–115. [6] H.J. McQueen, Metall. Mater. Trans. A 33 (2002) 345–362. [7] H.J. McQueen, in: T.G. Langdon, H.D. Merchant (Eds.), Hot Deformation of Aluminium Alloys, TMS-AIME, Warrendale, PA, 1991, pp. 105–120. [8] M. Carsi, F. Pe˜nalba, O.A. Ruano, O.D. Sherby, Metall. Mater. Trans. A 28 (1997) 1913–1920. [9] S. Spigarelli, M. Cabibbo, E. Evangelista, J. Bidulska, J. Mater. Sci. 38 (2003) 81–88. [10] A. Oudin, P.D. Hodgson, M.R. Barnett, Mater. Sci. Eng. A 486 (2008) 72–79. [11] S. Spigarelli, M. El Mehtedi, P. Ricci, C. Mapelli, Mater. Sci. Eng. A 527 (2010) 4218–4228. [12] C. Badini, F. Marino, E. Verne, Mater. Sci. Eng. A 191 (1995) 185–191. [13] E. Hersent, J.H. Driver, D. Piot, Scripta Mater. 62 (2010) 455–457. [14] D. Jorge-Badiola, A. Iza-Mendia, I. Gutierrez, J. Microsc. 228 (3) (2007) 373–383. [15] C.M. Cepeda-Jimenez, M. Pozuelo, J.M. Garcia-Infanta, O.A. Ruano, F. Carre˜no, Metall. Mater. Trans. A 40 (2009) 69–79. [16] C.M. Cepeda-Jimenez, P. Hidalgo, M. Pozuelo, O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 527 (2010) 2579–2587. [17] D.S. Fields Jr., W.A. Backofen, Proc. Am. Soc. Test. Mater. 57 (1957) 1259. [18] M. Carsi, R. Allende, F. Peñalba, J.A. Jimenez, O.A. Ruano, Steel Res. Int. 75 (2004) 26–32. [19] C.E. Campbell, L.A. Bendersky, W.J. Boettinger, R. Ivester, Mater. Sci. Eng. A 430 (2006) 15–26. [20] Y. Xue, H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Acta Mater. 55 (2007) 1975–1984. [21] J. Dennis, P.S. Bate, F.J. Humphreys, Acta Mater. 57 (2009) 4539–4547. [22] Y. Huang, F.J. Humphreys, M. Ferry, Acta Mater. 48 (2000) 2543–2556. [23] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen, Mater. Sci. Eng. A 205 (1996) 23–30. [24] T. Pettersen, E. Nes, Metall. Mater. Trans. A 34 (2003) 2727–2736. [25] A. Gholinia, P. Bate, P.B. Prangnell, Acta Mater. 50 (2002) 2121–2136. [26] G.R. Canova, U.F. Kocks, J.J. Jonas, Acta Metall. 32 (1984) 211–226. [27] R.K. Islamgaliev, N.F. Yunusova, I.N. Sabirov, A.V. Sergueeva, R.Z. Valiev, Mater. Sci. Eng. A 319–321 (2001) 877–881. [28] B. Verlinden, P. Wouters, H.J. McQueen, E. Aernoudt, L. Delaey, S. Cauwenberg, Mater. Sci. Eng. A 123 (1990) 229–237. [29] C.R. Brooks (Ed.), Heat Treatment, Structures and Properties of Nonferrous Alloys, American Society for Metals, Metals Park, OH, 1982, p.121. [30] J.P. Lokker, A.J. Bottger, W.G. Sloof, F.D. Tichelaar, G.C.A.M. Janssen, S. Radelaar, Acta Mater. 49 (2001) 1339–1349. [31] A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Technol. 23 (2007) 1478–1484. [32] M.R. Barnett, F. Montheillet, Acta Mater. 50 (2002) 2285–2296. [33] S. Gourdet, F. Montheillet, Mater. Sci. Eng. A 283 (2000) 274–288. [34] B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgson, Mater. Sci. Eng. A 435–436 (2006) 499–503. [35] D. Dumont, A. Deschamps, Y. Brechet, Mater. Sci. Eng. A 356 (2003) 326–336. [36] P.J. Apps, J.R. Bowen, P.B. Prangnell, Acta Mater. 51 (2003) 2811–2822. [37] N. Jin, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Charact. 60 (2009) 530–536. [38] F. Montheillet, M. Cohen, J.J. Jonas, Acta Metall. 32 (1984) 2077–2089. [39] J.K. Solberg, H.J. McQueen, N. Ryum, E. Nes, Phil. Mag. A 60 (1989) 447–471. [40] H.J. McQueen, J.K. Solberg, N. Ryum, E. Nes, Phil. Mag. A 60 (1989) 473–485. [41] E. Cerri, E. Evangelista, A. Forcellese, H.J. McQueen, Mater. Sci. Eng. A 197 (1995) 181–198.