Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Microstructural characterization by electron backscatter diffraction of a hot worked Al-Cu-Mg alloy

dc.contributor.authorCepeda Jimenez, C. M.
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorCarsi, M.
dc.contributor.authorRuano, O. A.
dc.contributor.authorCarreño, F.
dc.date.accessioned2023-06-20T03:39:14Z
dc.date.available2023-06-20T03:39:14Z
dc.date.issued2011-03-25
dc.description© 2010 Elsevier B.V. All rights reserved. Financial support from CICYT (Project MAT2009-14452) is gratefully acknowledged. C.M. Cepeda-Jimenez thanks the Spanish National Research Council (CSIC) for a I3P contract. We also thank F.F. Gonzalez-Rodriguez for assistance during hot torsion. Finally, an especial mention in memory of P.J. Gonzalez-Aparicio for his help and assistance with electron microscopy during all these years is made.
dc.description.abstractHot torsion tests to fracture to simulate thermomechanical processing were carried out on a solution-treated Al-Cu-Mg alloy (Al 2024-T351) at constant temperature. Torsion tests were conducted in the range 278-467 degrees C, and at two strain rates, 2.1 and 4.5 s(-1). Electron backscatter diffraction (EBSD) was employed to characterize the microtexture and microstructure before and after testing. The microstructural evolution during torsion deformation at different temperatures and strain rate conditions determines the mechanical properties at room temperature of the Al 2024 alloy since grain refining, dynamic precipitation and precipitate coalescence occur during the torsion test. These mechanical properties were measured by Vickers microhardness tests. At 408 degrees C and 2.1 s(-1) the optimum combination of solid solution and incipient precipitation gives rise to maximum ductility and large fraction of fine and misoriented grains (f(HAB) = 54%). In contrast, the increase in test temperature to 467 degrees C produces a sharp decrease in ductility, attributed to the high proportion of alloying elements in solid solution. Both the stress-strain flow curves obtained by torsion tests and the final microstructures are a consequence of recovery phenomena and the dynamic nature of the precipitation process taking place during deformation.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipSpanish National Research Council (CSIC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25345
dc.identifier.doi10.1016/j.msea.2010.12.045
dc.identifier.issn0921-5093
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.msea.2010.12.045
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44167
dc.issue.number7-ago
dc.journal.titleMaterials Science and Engineering A-Structural Materials Properties Microstructure and Processing
dc.language.isoeng
dc.page.final3168
dc.page.initial3161
dc.publisherElsevier Science SA
dc.relation.projectIDMAT2009-14452
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordAluminum-Alloy
dc.subject.keywordTexture Development
dc.subject.keywordElevated-Temperatures
dc.subject.keywordStainless-Steel
dc.subject.keywordCarbon-Steel
dc.subject.keywordTorsion
dc.subject.keywordDeformation
dc.subject.keywordBehavior
dc.subject.keywordPrecipitation
dc.subject.keywordEvolution
dc.subject.ucmFísica de materiales
dc.titleMicrostructural characterization by electron backscatter diffraction of a hot worked Al-Cu-Mg alloy
dc.typejournal article
dc.volume.number528
dcterms.references[1] M. Ueki, S. Horie, T. Nakamura, J. Mech. Work. technol. 11 (1985) 365–376. [2] F.C. Liu, B.L. Xiao, K. Wang, Z.Y. Ma, Mater. Sci. Eng. A 527 (2010) 4191–4196. [3] P. Cavaliere, J. Light Metal 2 (2002) 247–252. [4] H. Zhang, G.Y. Lin, D.S. Peng, J. Mater. Process. Technol. 148 (2004) 245–249. [5] G.Y. Lin, Z.F. Zhang, D.S. Peng, J. Zhou, Acta Metall. Sin. 21 (2008) 109–115. [6] H.J. McQueen, Metall. Mater. Trans. A 33 (2002) 345–362. [7] H.J. McQueen, in: T.G. Langdon, H.D. Merchant (Eds.), Hot Deformation of Aluminium Alloys, TMS-AIME, Warrendale, PA, 1991, pp. 105–120. [8] M. Carsi, F. Pe˜nalba, O.A. Ruano, O.D. Sherby, Metall. Mater. Trans. A 28 (1997) 1913–1920. [9] S. Spigarelli, M. Cabibbo, E. Evangelista, J. Bidulska, J. Mater. Sci. 38 (2003) 81–88. [10] A. Oudin, P.D. Hodgson, M.R. Barnett, Mater. Sci. Eng. A 486 (2008) 72–79. [11] S. Spigarelli, M. El Mehtedi, P. Ricci, C. Mapelli, Mater. Sci. Eng. A 527 (2010) 4218–4228. [12] C. Badini, F. Marino, E. Verne, Mater. Sci. Eng. A 191 (1995) 185–191. [13] E. Hersent, J.H. Driver, D. Piot, Scripta Mater. 62 (2010) 455–457. [14] D. Jorge-Badiola, A. Iza-Mendia, I. Gutierrez, J. Microsc. 228 (3) (2007) 373–383. [15] C.M. Cepeda-Jimenez, M. Pozuelo, J.M. Garcia-Infanta, O.A. Ruano, F. Carre˜no, Metall. Mater. Trans. A 40 (2009) 69–79. [16] C.M. Cepeda-Jimenez, P. Hidalgo, M. Pozuelo, O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 527 (2010) 2579–2587. [17] D.S. Fields Jr., W.A. Backofen, Proc. Am. Soc. Test. Mater. 57 (1957) 1259. [18] M. Carsi, R. Allende, F. Peñalba, J.A. Jimenez, O.A. Ruano, Steel Res. Int. 75 (2004) 26–32. [19] C.E. Campbell, L.A. Bendersky, W.J. Boettinger, R. Ivester, Mater. Sci. Eng. A 430 (2006) 15–26. [20] Y. Xue, H. El Kadiri, M.F. Horstemeyer, J.B. Jordon, H. Weiland, Acta Mater. 55 (2007) 1975–1984. [21] J. Dennis, P.S. Bate, F.J. Humphreys, Acta Mater. 57 (2009) 4539–4547. [22] Y. Huang, F.J. Humphreys, M. Ferry, Acta Mater. 48 (2000) 2543–2556. [23] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen, Mater. Sci. Eng. A 205 (1996) 23–30. [24] T. Pettersen, E. Nes, Metall. Mater. Trans. A 34 (2003) 2727–2736. [25] A. Gholinia, P. Bate, P.B. Prangnell, Acta Mater. 50 (2002) 2121–2136. [26] G.R. Canova, U.F. Kocks, J.J. Jonas, Acta Metall. 32 (1984) 211–226. [27] R.K. Islamgaliev, N.F. Yunusova, I.N. Sabirov, A.V. Sergueeva, R.Z. Valiev, Mater. Sci. Eng. A 319–321 (2001) 877–881. [28] B. Verlinden, P. Wouters, H.J. McQueen, E. Aernoudt, L. Delaey, S. Cauwenberg, Mater. Sci. Eng. A 123 (1990) 229–237. [29] C.R. Brooks (Ed.), Heat Treatment, Structures and Properties of Nonferrous Alloys, American Society for Metals, Metals Park, OH, 1982, p.121. [30] J.P. Lokker, A.J. Bottger, W.G. Sloof, F.D. Tichelaar, G.C.A.M. Janssen, S. Radelaar, Acta Mater. 49 (2001) 1339–1349. [31] A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Technol. 23 (2007) 1478–1484. [32] M.R. Barnett, F. Montheillet, Acta Mater. 50 (2002) 2285–2296. [33] S. Gourdet, F. Montheillet, Mater. Sci. Eng. A 283 (2000) 274–288. [34] B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgson, Mater. Sci. Eng. A 435–436 (2006) 499–503. [35] D. Dumont, A. Deschamps, Y. Brechet, Mater. Sci. Eng. A 356 (2003) 326–336. [36] P.J. Apps, J.R. Bowen, P.B. Prangnell, Acta Mater. 51 (2003) 2811–2822. [37] N. Jin, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Charact. 60 (2009) 530–536. [38] F. Montheillet, M. Cohen, J.J. Jonas, Acta Metall. 32 (1984) 2077–2089. [39] J.K. Solberg, H.J. McQueen, N. Ryum, E. Nes, Phil. Mag. A 60 (1989) 447–471. [40] H.J. McQueen, J.K. Solberg, N. Ryum, E. Nes, Phil. Mag. A 60 (1989) 473–485. [41] E. Cerri, E. Evangelista, A. Forcellese, H.J. McQueen, Mater. Sci. Eng. A 197 (1995) 181–198.
dspace.entity.typePublication
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication.latestForDiscoveryc834e5a4-3450-4ff7-8ca1-663a43f050bb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HidalgoP04.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format

Collections