Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Curvature tensor and collective behavior in a population of bacteria

dc.contributor.authorOleaga Apadula, Gerardo Enrique
dc.contributor.authorRuscitti, Claudia
dc.contributor.authorLangoni, Laura
dc.contributor.authorMelgarejo, Augusto
dc.date.accessioned2023-06-22T12:32:02Z
dc.date.available2023-06-22T12:32:02Z
dc.date.issued2022-11-01
dc.description.abstractIn this work, from a geometric point of view, we analyze the SET model (Schweitzer, Ebeling and Tilch) of the mobility of a bacterium. Biological systems are out of thermodynamic equilibrium and they are subject to complex external or internal influences that can be modeled in the form of noise or fluctuations. In this sense, due to the stochasticity of the variables, we study the probability of finding a bacteria with a speed v in the interval (v; v +dv) or, from a population point of view, we can interpret the probability density function as associated with finding a bacterium with a speed v in the interval (v; v +dv). We carry out this study from the stationary probability density solution of the Fokker-Planck equation and using the structure of the statistical manifold related with the stationary probability density, we study the curvature tensor in terms of two coordinates associated with the state of mobility of the bacteria and the environmental conditions. Taking as reference the geometric interpretations found in the framework of equilibrium thermodynamics, our results suggest that bacteria have an effective repulsive interaction that increases with mobility. These results are compatible with the behavior of populations of bacteria that form biofilms when their mobility decreases.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75933
dc.identifier.doi10.1088/1402-4896/ac9be3
dc.identifier.issn0031-8949
dc.identifier.officialurlhttps://doi.org/10.1088/1402-4896/ac9be3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72773
dc.issue.number12
dc.journal.titlePhysica scripta
dc.language.isospa
dc.page.initial125001
dc.publisherIOP Publishing
dc.rights.accessRightsopen access
dc.subject.cdu51:57
dc.subject.keywordDifferential geometry
dc.subject.keywordBacterial mobility
dc.subject.keywordNon-equilibrium macroscopic potential
dc.subject.ucmBiomatemáticas
dc.subject.unesco2404 Biomatemáticas
dc.titleCurvature tensor and collective behavior in a population of bacteria
dc.typejournal article
dc.volume.number97
dcterms.references[1] Schweitzer F, Ebeling W and Tilch B 1998 Complex motion of brownian particles with energy depots Phys. Rev. Lett. 80 5044–7 [2] Ebeling W, Schweitzer F and Tilch B 1999 Active Brownian particles with energy depots modeling animal mobility BioSystems 49 17–29 [3] Amari S et al(ed) 1985 Differential-Geometrical Methods in Statistics, in: Lecture Notes in Statistics vol 28 (New York: Springer) [4] Ruscitti C, Langoni L and Melgarejo A 2019 Description of inestabilities in Uhlenbeck Ornstein process Phys. Scr. 94 115010 [5] Obata T, Hara H and Endo K 1992 Differential geometry of non-equilibrium processes Phys. Rev.A 45 6997–7001 [6] Dubrowvin B A, Fomenko A T and Novikov S P 1984 Modern Geometry-Methods and Applications II edn (New York: Springer) [7] Janyszek H and Mrugala R 1989 Riemannian geometry and the thermodynamics of model magnetic systems Phys. Rev. A 39 6515–23 [8] Melgarejo A A, Langoni L and Ruscitti C 2016 Instability in bacterial populations and the curvature tensor Physica A 458 189–93 [9] Condat C A and Sibona G J 2002 Diffusion in a model for active Brownian motion Physica D 168 235–43 [10] Brody D C and Hook D W 2009 Information geometry in vapour-liquid equilibrium J. Phys. A: Math. Theor. 42 023001 [11] Jaynes E T 1957 Information theory and statistical mechanics Phys. Rev. 106 620–30 [12] Oshima H, Obata T and Hara H 1999 Riemann scalar curvature of ideal quantum gases obeying Gentile’s statisticsJ. Phys. A: Math. Gen. 32 6373–83 [13] Ruppeiner G 1995 Riemannian geometry in thermodynamic fluctuation theory Rev. Modern Phys. 67 605–59 [14] Ruppeiner G 1998 Riemannian geometric approach to critical points: General theory Phys. Rev. E 57 5135–45 [15] Ruppeiner G 1979 Thermodynamics: A Riemannian geometric model Phys. Rev. A 20 1608–13
dspace.entity.typePublication
relation.isAuthorOfPublication8a7b6bff-4e63-42ed-bb95-31a089c7d57f
relation.isAuthorOfPublication.latestForDiscovery8a7b6bff-4e63-42ed-bb95-31a089c7d57f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oleaga-curvature.pdf
Size:
613.25 KB
Format:
Adobe Portable Document Format

Collections