Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

La topología de los problemas de división: reparto libre de envidia y división consensuada

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2016

Defense date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

En este trabajo se estudian dos problemas de división y la topología que se requiere para resolverlos. Los problemas son el reparto libre de envidia y la división consensuada, y los resultados topológicos involucrados son el Teorema del Punto Fijo de Brouwer y el Teorema de Borsuk-Ulam. Estos teoremas se deducen de sus análogos discretos: el Lema de Sperner y el Lema de Tucker. También analizamos las equivalencias formales entre estos cuatro resultados. Palabras clave: División justa y libre de envidia, división consensuada, lema de Sperner, teorema del punto fijo de Brouwer, lema débil de Ky Fan, lema de Tucker, teorema de Borsuk-Ulam
In this work we study two division problems, and the topology behind their solutions. The problems are fair division and consensus division, and the topological results involved are the Brouwer Fixed Point Theorem and the Borsuk-Ulam Theorem. These theorems are deduced from their discrete versions: the Sperner Lemma and the Tucker Lemma. Also we discuss the formal equivalences among these four results

Research Projects

Organizational Units

Journal Issue

Description

Keywords