Interpolation of the inner measure of bilinear operators by the real method

Loading...
Thumbnail Image

Full text at PDC

Publication date

2025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

We describe a procedure for extending the inner measure $\beta_{_{\mathcal{I}}}$ associated to an operator ideal $\mathcal{I}$ to a measure $\beta_{_{\mathfrak{J}}}$ for bounded bilinear operators $T$. When $\mathcal{I}$ is injective and close, we show that $\beta_{_{\mathfrak{J}}}(T)=0$ if and only if $T=RS$ for some bounded bilinear operator $S$ and $R\in\mathcal{I}$. If $\mathcal{I}$ satisfies the $\Sigma_r$-condition, then we establish a convexity inequality for the measure $\beta_{_{\mathfrak{J}}}$ of a bilinear operator interpolated by the real method.

Research Projects

Organizational Units

Journal Issue

Description

2025 Acuerdos transformativos CRUE

UCM subjects

Unesco subjects

Keywords

Collections