Interpolation of the inner measure of bilinear operators by the real method
| dc.contributor.author | Cobos Díaz, Fernando | |
| dc.contributor.author | Fernández-Cabrera Marín, Luz María | |
| dc.contributor.author | Martínez. Antón | |
| dc.date.accessioned | 2025-05-29T16:34:10Z | |
| dc.date.available | 2025-05-29T16:34:10Z | |
| dc.date.issued | 2025 | |
| dc.description | 2025 Acuerdos transformativos CRUE | |
| dc.description.abstract | We describe a procedure for extending the inner measure $\beta_{_{\mathcal{I}}}$ associated to an operator ideal $\mathcal{I}$ to a measure $\beta_{_{\mathfrak{J}}}$ for bounded bilinear operators $T$. When $\mathcal{I}$ is injective and close, we show that $\beta_{_{\mathfrak{J}}}(T)=0$ if and only if $T=RS$ for some bounded bilinear operator $S$ and $R\in\mathcal{I}$. If $\mathcal{I}$ satisfies the $\Sigma_r$-condition, then we establish a convexity inequality for the measure $\beta_{_{\mathfrak{J}}}$ of a bilinear operator interpolated by the real method. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1007/s43036-025-00444-y | |
| dc.identifier.officialurl | https://doi.org/10.1007/s43036-025-00444-y | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/120646 | |
| dc.issue.number | 3 | |
| dc.journal.title | Advances in Operator Theory | |
| dc.language.iso | eng | |
| dc.page.initial | 59 (4) | |
| dc.publisher | Springer | |
| dc.relation.projectID | PCI2024-155073-2 | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keyword | Inner measure of bilinear operators | |
| dc.subject.keyword | Real interpolation of bilinear operators | |
| dc.subject.keyword | Convexity inequalities | |
| dc.subject.keyword | Projective tensor products | |
| dc.subject.ucm | Ciencias | |
| dc.subject.unesco | 12 Matemáticas | |
| dc.title | Interpolation of the inner measure of bilinear operators by the real method | |
| dc.type | journal article | |
| dc.type.hasVersion | VoR | |
| dc.volume.number | 10 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ad35279f-f928-4b72-a5bd-e422662ac4c1 | |
| relation.isAuthorOfPublication | f3690587-4355-4f8b-9754-a21a52918c80 | |
| relation.isAuthorOfPublication.latestForDiscovery | ad35279f-f928-4b72-a5bd-e422662ac4c1 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cobos_et_al-2025-Advances_in_Operator_Theory.pdf
- Size:
- 586.65 KB
- Format:
- Adobe Portable Document Format


