Gauge invariance on principal SU(2)-bundles
dc.book.title | Secondary calculus and cohomological physics | |
dc.contributor.author | Castrillón López, Marco | |
dc.contributor.author | Muñoz Masqué, Jaime | |
dc.contributor.editor | Henneaux, Marc | |
dc.contributor.editor | Krasil'shchik, Joseph | |
dc.contributor.editor | Vinogradov, Alexandre | |
dc.date.accessioned | 2023-06-20T21:08:38Z | |
dc.date.available | 2023-06-20T21:08:38Z | |
dc.date.issued | 1998 | |
dc.description | Papers from the conference held at Moscow State University, Moscow, August 24–31, 1997. | |
dc.description.abstract | Let π:P→M be a principal G-bundle. One denotes by J1P the 1-jet bundle of local sections of π, by autP the Lie algebra of G-invariant vector fields of P and by gauP the ideal of π-vertical vector fields in autP. A differential form ω on J1P is said to be autP-invariant [resp. gauP-invariant] if LX(1)ω=0 for every X∈autP [resp. X∈gauP], where X(1) is the natural lift of X∈X(P) to J1P, i.e., X(1) is the infinitesimal contact transformation associated to X. The authors of the present paper study the structure of autP- and gau P-invariant forms, when the structure group is G=SU(2). They prove that the algebra of autP-invariant [resp. gauP-invariant] forms is differentiably generated over the real numbers [resp. over the graded algebra of differential forms on M] by the standard structure forms. These are the 1-forms ϑa obtained when one decomposes the standard su(2)-valued 1-form ϑ on J1P as ϑ=ϑa⊗Ba, a∈{1,2,3}, where Ba is the standard basis of the Lie algebra su(2). On the other hand, by means of the identification between the affine bundle C(P)→M of connections on P and the quotient bundle (J1P)/G→M, they show that the representation autP→X(C(P)) can be obtained by infinitesimal contact transformations | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24330 | |
dc.identifier.isbn | 0821808281 | |
dc.identifier.officialurl | http://www.emis.de/proceedings/SCCP97/4.html | |
dc.identifier.relatedurl | http://www.emis.de/proceedings/SCCP97/ | |
dc.identifier.relatedurl | http://www.ams.org/home/page | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60806 | |
dc.issue.number | 219 | |
dc.language.iso | eng | |
dc.page.final | 9 | |
dc.page.total | 287 | |
dc.publication.place | Providence | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Contemporary mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | Automorphism of a principal bundle | |
dc.subject.keyword | bundle of connections | |
dc.subject.keyword | contact forms | |
dc.subject.keyword | gauge algebra | |
dc.subject.keyword | gauge group | |
dc.subject.keyword | infinitesimal contact transformation | |
dc.subject.keyword | invariant differential forms | |
dc.subject.keyword | jet bundle | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Gauge invariance on principal SU(2)-bundles | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 32e59067-ef83-4ca6-8435-cd0721eb706b | |
relation.isAuthorOfPublication.latestForDiscovery | 32e59067-ef83-4ca6-8435-cd0721eb706b |
Download
Original bundle
1 - 1 of 1