Non-formal compact manifolds with small Betti numbers.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Faculty of Mathematics University of Belgrade
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that, for any k ¸ 1, there exist non-formal compact orientable (k ¡ 1)-connected n-manifolds with k-th Betti number bk = b ¸ 0 if and only if n ¸ maxf4k ¡ 1; 4k + 3 ¡ 2bg.
UCM subjects
Unesco subjects
R. Bott and L.W. Tu, Diferential forms in algebraic topology, Graduate Texts in Math. 82, Springer Verlag, 1982. G. Cavalcanti, Formality of k-connected spaces in 4k + 3 and 4k + 4 dimen-sions, Math. Proc. Cam. Phil. Soc. 141 (2006), 101{112. P. Deligne, P. Griffths, J. Morgan and D. Sullivan, Real homotopy theory of Kaahler manifolds, Invent. Math. 29 (1975), 245{274. A. Dranishnikov and Y. Rudyak, Examples of non-formal closed (k ¡ 1)-connected manifolds of dimensions 4k ¡ 1 and more, In: Proc. Amer. Math.Soc. 133 (2005), 1557{1561. M. Fern¶andez and V. Mu~noz, Formality of Donaldson submanifolds, Math.Zeit. 250 (2005), 149{175. M. Fernandez and V. Muñoz, On non-formal simply connected manifolds,Topology and its Appl. 135 (2004), 111{117. M. Fern¶andez and V. Mu~noz, The geography of non-formal manifolds, Com-plex, contact and symmetric manifolds, Progress in Math. 234, (BirkhÄauser,2005) 121{129. S. Halperin, Lectures on minimal models, Mem. Soc. Math.France 230,1983. T.J. Miller, On the formality of (k ¡ 1) connected compact manifolds of di-mension less than or equal to (4k¡2),Illinois. J. Math. 23 (1979), 253{258. J. Neisendorfer and T.J. Miller, Formal and coformal spaces, Illinois. J. Math.22 (1978), 565{580. J. Oprea, The Samelson space of a ¯bration, Michigan Math. J. 34 (1987),127{141. D. Tanre, Homotopie rationnelle: Modµeles de Chen, Quillen, Sullivan, Lec-ture Notes in Math. 1025, Springer Verlag, 1983.