Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Non-formal compact manifolds with small Betti numbers.

dc.book.titleProceedings of the Conference Contemporary geometry and Related Topics
dc.contributor.authorFernández, M.
dc.contributor.authorMuñoz, Vicente
dc.contributor.editorBokan, Neda
dc.contributor.editorDjorić, Mirjana
dc.contributor.editorFomenko, Anatoly T.
dc.contributor.editorRakić, Zoran
dc.contributor.editorWegner, Bernd
dc.contributor.editorWess, Julius
dc.date.accessioned2023-06-20T13:39:20Z
dc.date.available2023-06-20T13:39:20Z
dc.date.issued2006
dc.description.abstractWe show that, for any k ¸ 1, there exist non-formal compact orientable (k ¡ 1)-connected n-manifolds with k-th Betti number bk = b ¸ 0 if and only if n ¸ maxf4k ¡ 1; 4k + 3 ¡ 2bg.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.sponsorshipUPV
dc.description.sponsorshipMinisterio de Educaci¶on y Ciencia (
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21093
dc.identifier.isbn86-7589-059-1
dc.identifier.officialurlhttp://www.emis.de/proceedings/CGRT2005/Articles/cgrt15.pdf
dc.identifier.relatedurlhttp://www.emis.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53234
dc.language.isoeng
dc.page.final246
dc.page.initial231
dc.page.total534
dc.publication.placeBelgrade
dc.publisherFaculty of Mathematics University of Belgrade
dc.relation.projectIDMTM2005-08757-C04-02
dc.relation.projectID00127.310-E-15909/2004.
dc.relation.projectIDMTM2004-09070-C03-01.
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordFormality
dc.subject.keywordMassey products.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleNon-formal compact manifolds with small Betti numbers.
dc.typebook part
dcterms.referencesR. Bott and L.W. Tu, Diferential forms in algebraic topology, Graduate Texts in Math. 82, Springer Verlag, 1982. G. Cavalcanti, Formality of k-connected spaces in 4k + 3 and 4k + 4 dimen-sions, Math. Proc. Cam. Phil. Soc. 141 (2006), 101{112. P. Deligne, P. Griffths, J. Morgan and D. Sullivan, Real homotopy theory of Kaahler manifolds, Invent. Math. 29 (1975), 245{274. A. Dranishnikov and Y. Rudyak, Examples of non-formal closed (k ¡ 1)-connected manifolds of dimensions 4k ¡ 1 and more, In: Proc. Amer. Math.Soc. 133 (2005), 1557{1561. M. Fern¶andez and V. Mu~noz, Formality of Donaldson submanifolds, Math.Zeit. 250 (2005), 149{175. M. Fernandez and V. Muñoz, On non-formal simply connected manifolds,Topology and its Appl. 135 (2004), 111{117. M. Fern¶andez and V. Mu~noz, The geography of non-formal manifolds, Com-plex, contact and symmetric manifolds, Progress in Math. 234, (BirkhÄauser,2005) 121{129. S. Halperin, Lectures on minimal models, Mem. Soc. Math.France 230,1983. T.J. Miller, On the formality of (k ¡ 1) connected compact manifolds of di-mension less than or equal to (4k¡2),Illinois. J. Math. 23 (1979), 253{258. J. Neisendorfer and T.J. Miller, Formal and coformal spaces, Illinois. J. Math.22 (1978), 565{580. J. Oprea, The Samelson space of a ¯bration, Michigan Math. J. 34 (1987),127{141. D. Tanre, Homotopie rationnelle: Modµeles de Chen, Quillen, Sullivan, Lec-ture Notes in Math. 1025, Springer Verlag, 1983.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz42.pdf
Size:
241.52 KB
Format:
Adobe Portable Document Format