Non-formal compact manifolds with small Betti numbers.
dc.book.title | Proceedings of the Conference Contemporary geometry and Related Topics | |
dc.contributor.author | Fernández, M. | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.editor | Bokan, Neda | |
dc.contributor.editor | Djorić, Mirjana | |
dc.contributor.editor | Fomenko, Anatoly T. | |
dc.contributor.editor | Rakić, Zoran | |
dc.contributor.editor | Wegner, Bernd | |
dc.contributor.editor | Wess, Julius | |
dc.date.accessioned | 2023-06-20T13:39:20Z | |
dc.date.available | 2023-06-20T13:39:20Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We show that, for any k ¸ 1, there exist non-formal compact orientable (k ¡ 1)-connected n-manifolds with k-th Betti number bk = b ¸ 0 if and only if n ¸ maxf4k ¡ 1; 4k + 3 ¡ 2bg. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educacion y Ciencia | |
dc.description.sponsorship | UPV | |
dc.description.sponsorship | Ministerio de Educaci¶on y Ciencia ( | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21093 | |
dc.identifier.isbn | 86-7589-059-1 | |
dc.identifier.officialurl | http://www.emis.de/proceedings/CGRT2005/Articles/cgrt15.pdf | |
dc.identifier.relatedurl | http://www.emis.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53234 | |
dc.language.iso | eng | |
dc.page.final | 246 | |
dc.page.initial | 231 | |
dc.page.total | 534 | |
dc.publication.place | Belgrade | |
dc.publisher | Faculty of Mathematics University of Belgrade | |
dc.relation.projectID | MTM2005-08757-C04-02 | |
dc.relation.projectID | 00127.310-E-15909/2004. | |
dc.relation.projectID | MTM2004-09070-C03-01. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Formality | |
dc.subject.keyword | Massey products. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Non-formal compact manifolds with small Betti numbers. | |
dc.type | book part | |
dcterms.references | R. Bott and L.W. Tu, Diferential forms in algebraic topology, Graduate Texts in Math. 82, Springer Verlag, 1982. G. Cavalcanti, Formality of k-connected spaces in 4k + 3 and 4k + 4 dimen-sions, Math. Proc. Cam. Phil. Soc. 141 (2006), 101{112. P. Deligne, P. Griffths, J. Morgan and D. Sullivan, Real homotopy theory of Kaahler manifolds, Invent. Math. 29 (1975), 245{274. A. Dranishnikov and Y. Rudyak, Examples of non-formal closed (k ¡ 1)-connected manifolds of dimensions 4k ¡ 1 and more, In: Proc. Amer. Math.Soc. 133 (2005), 1557{1561. M. Fern¶andez and V. Mu~noz, Formality of Donaldson submanifolds, Math.Zeit. 250 (2005), 149{175. M. Fernandez and V. Muñoz, On non-formal simply connected manifolds,Topology and its Appl. 135 (2004), 111{117. M. Fern¶andez and V. Mu~noz, The geography of non-formal manifolds, Com-plex, contact and symmetric manifolds, Progress in Math. 234, (BirkhÄauser,2005) 121{129. S. Halperin, Lectures on minimal models, Mem. Soc. Math.France 230,1983. T.J. Miller, On the formality of (k ¡ 1) connected compact manifolds of di-mension less than or equal to (4k¡2),Illinois. J. Math. 23 (1979), 253{258. J. Neisendorfer and T.J. Miller, Formal and coformal spaces, Illinois. J. Math.22 (1978), 565{580. J. Oprea, The Samelson space of a ¯bration, Michigan Math. J. 34 (1987),127{141. D. Tanre, Homotopie rationnelle: Modµeles de Chen, Quillen, Sullivan, Lec-ture Notes in Math. 1025, Springer Verlag, 1983. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1