Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncertainty quantification in Covid-19 spread: Lockdown effects

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorPierret, Emile
dc.date.accessioned2023-06-22T12:29:01Z
dc.date.available2023-06-22T12:29:01Z
dc.date.issued2022-03-05
dc.description.abstractWe develop a Bayesian inference framework to quantify uncertainties in epidemiological models. We use SEIJR and SIJR models involving populations of susceptible, exposed, infective, diagnosed, dead and recovered individuals to infer from Covid-19 data rate constants, as well as their variations in response to lockdown measures. To account for confinement, we distinguish two susceptible populations at different risk: confined and unconfined. We show that transmission and recovery rates within them vary in response to facts, and that the diagnose rate is quite low, which leads to large amounts of undiagnosed infective individuals. A key unknown to predict the evolution of the epidemic is the fraction of the population affected by the virus, including asymptomatic subjects. Our study tracks its time evolution with quantified uncertainty from available official data, limited, however, by the data quality. We exemplify the technique with data from Spain, country in which late drastic lockdowns were enforced for months during the first wave of the current pandemic. In late actions and in the absence of other measures, spread is delayed but not stopped unless a large enough fraction of the population is confined until the asymptomatic population is depleted. To some extent, confinement can be replaced by strong distancing through masks in adequate circumstances.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75496
dc.identifier.citationCarpio Rodríguez, A. M. y Pierret, E. «Uncertainty Quantification in Covid-19 Spread: Lockdown Effects». Results in Physics, vol. 35, abril de 2022, p. 105375. DOI.org (Crossref), https://doi.org/10.1016/j.rinp.2022.105375.
dc.identifier.doi10.1016/j.rinp.2022.105375
dc.identifier.issn2211-3797
dc.identifier.officialurlhttps://doi.org/10.1016/j.rinp.2022.105375
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72640
dc.journal.titleResults in physics
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDMTM2017-84446-C2-1-R, PID2020-112796RB-C21
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu517
dc.subject.cdu616.9
dc.subject.keywordSEIJR models
dc.subject.keywordCovid-19
dc.subject.keywordNumerical simulation
dc.subject.keywordBayesian inference. Uncertainty quantification
dc.subject.ucmAnálisis matemático
dc.subject.ucmEnfermedades infecciosas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco3205.05 Enfermedades Infecciosas
dc.titleUncertainty quantification in Covid-19 spread: Lockdown effectsen
dc.typejournal article
dc.volume.number35
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
carpio_uncertainty.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format

Collections