Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

First-order transition in a three-dimensional disordered system

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.

Research Projects

Organizational Units

Journal Issue

Description

© 2008 American Physical Society. This work has been partially supported by MEC through Contracts No. FIS2004-01399, No. FIS2006-08533-C03, No. FIS2007-60977 and by CAM and BSCH. Computer time was obtained at BIFI, UCM, UEX, and, mainly, in the Mare Nostrum. The authors thankfully acknowledge the computer resources and technical expertise provided by the Barcelona Supercomputing Center.

Unesco subjects

Keywords

Collections