Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

First-order transition in a three-dimensional disordered system

dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorGordillo Guerrero, A.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorRuiz Lorenzo, J. J.
dc.date.accessioned2023-06-20T11:17:05Z
dc.date.available2023-06-20T11:17:05Z
dc.date.issued2008-02-08
dc.description© 2008 American Physical Society. This work has been partially supported by MEC through Contracts No. FIS2004-01399, No. FIS2006-08533-C03, No. FIS2007-60977 and by CAM and BSCH. Computer time was obtained at BIFI, UCM, UEX, and, mainly, in the Mare Nostrum. The authors thankfully acknowledge the computer resources and technical expertise provided by the Barcelona Supercomputing Center.
dc.description.abstractWe present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC (Spain)
dc.description.sponsorshipCAM (Spain)
dc.description.sponsorshipBSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38265
dc.identifier.doi10.1103/PhysRevLett.100.057201
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://doi.org/10.1103/PhysRevLett.100.057201
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51915
dc.issue.number5
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2004-01399
dc.relation.projectIDFIS2006-08533-C03
dc.relation.projectIDFIS2007-60977
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu51-73
dc.subject.keywordDiluted ising-model
dc.subject.keywordBond Potts models
dc.subject.keywordCritical-behavior
dc.subject.keywordPhase-transitions
dc.subject.keywordMonte-Carlo
dc.subject.keywordCritical exponents.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleFirst-order transition in a three-dimensional disordered system
dc.typejournal article
dc.volume.number100
dcterms.references[1] E. Dagotto, Science, 309, 257 (2005) -- J. Burgy, et al., Phys. Rev. Lett., 87, 277202 (2001) -- ibid, 92, 097202 (2004) -- C. Sen, G. Álvarez, E. Dagotto, Phys. Rev. Lett., 98, 127202 (2007). [2] See, e.g., G. Parisi, Field Theory, Disorder and Simulations (World Scientific, Singapore, 1994). [3] M. Aizenman, J. Wehr, Phys. Rev. Lett., 62, 2503 (1989) -- K. Hui, A. N. Berker, ibid., 62, 2507 (1989). [4] J. Cardy, J. L. Jacobsen, Phys. Rev. Lett., 79, 4063 (1997) -- ibid, Nucl. Phys., B515, 701 (1998). [5] C. Chatelain, B. Berche, Phys. Rev. Lett., 80, 1670 (1998) -- ibid, Phys. Rev. E, 58, R6899 (1998) -- ibid, 60, 3853 (1999). [6] F. Y. Wu, Rev. Mod. Phys., 54, 235 (1982) -- M. T. Marigold, J.-Ch. Angles d’Auriac, F. Igloi, Phys. Rev. E, 73, 026126 (2006). [7] C. Chatelain, B. Berche, W. Janke, P.-E. Berche, Phys. Rev. E, 64, 036120 (2001). [8] C. Chatelain, B. Berche, W. Janke, P.-E. Berche, Nucl. Phys., B719, 275 (2005). [9] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, Phys. Rev. B, 61, 3215 (2000). [10] M. S. S. Challa, D. P. Landau, K. Binder, Phys. Rev. B, 34, 1841 (1986) -- J. Lee, J. M. Kosterlitz, Phys. Rev. Lett., 65, 137 (1990). [11] J. T. Chayes, L. Chayes, D. S. Fischer, T. Spencer, Phys. Rev. Lett., 57, 2999 (1986) -- A. Maiorano, V. Martín Mayor, J. J. Ruiz-Lorenzo, A. Tarancón, Phys. Rev. B, 76, 064435 (2007). [12] T. Nehaus, J. S. Hager, J. Stat. Phys., 113, 47 (2003). [13] V. Martín-Mayor, Phys. Rev. Lett., 98, 137207 (2007). [14] R. H. Swendsen, J. S. Wang, Phys. Rev. Lett., 58, 86 (1987). [15] H. G. Ballesteros, et al., Nucl. Phys., B512, 681 (1998) -- ibid, Phys. Rev. B, 58, 2740 (1998). [16] F. Cooper, B. Freedman, D. Preston, Nucl. Phys., B210, 210 (1982). [17] D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena (World-Scientific, Singapore, 2005). [18] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378, 207 (1996) -- ibid, 387, 125 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio25LIBRE.pdf
Size:
327.42 KB
Format:
Adobe Portable Document Format

Collections