Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polar quasi-normal modes of neutron stars with equations of state satisfying the 2 M_0 constraint

dc.contributor.authorBlázquez Salcedo, José Luis
dc.contributor.authorGonzález Romero, Luis Manuel
dc.contributor.authorNavarro Lerida, Francisco
dc.date.accessioned2023-06-19T14:56:01Z
dc.date.available2023-06-19T14:56:01Z
dc.date.issued2014-02-06
dc.description©2014 American Physical Society. We would like to thank I. Bednarek for kindly providing us with the equation of state BHZBM, I. Sagert for equations of state WSPHS1–WSPHS3, A. Sedrakian for equations of state BS1–BS4, and S. Weissenborn for equations of state WCS1–WCS2. We thank Daniela Doneva for valuable comments on our work and Gabriel A. Galindo for his help concerning the exterior complex scaling method. We would also like to thank the referee for his/her suggestions. This work was supported by the Spanish Ministerio de Ciencia e Innovacion, research Project No. FIS2011-28013. J. L. B. was supported by the Spanish Universidad Complutense de Madrid.
dc.description.abstractIn this paper, we analyze the quasinormal mode spectrum of realistic neutron stars by studying the polar modes. In particular, we calculate the fundamental mode (f mode), the fundamental pressure mode (p mode), and the fundamental curvature mode (wI mode) for 15 different equations of state satisfying the 2 M_0 constraint, most of them containing exotic matter. Since f and p modes couple to matter perturbations, the influence of the presence of hyperons and quarks in the core of the neutron stars is more significant than for the axial component. We present phenomenological relations, which are compatible with previous results, for the frequency and damping time with the compactness of the neutron star. We also consider new phenomenological relations between the frequency and damping time of the wI mode and the f mode. These new relations are independent of the equation of state and could be used to estimate the central pressure, mass, or radius and eventually constrain the equation-of-state of neutron stars. To obtain these results, we have developed a new method based on the exterior complex scaling technique with a variable angle.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion, Spain
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32967
dc.identifier.doi10.1103/PhysRevD.89.044006
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.89.044006
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34846
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFIS2011-28013
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordRelativistic stellar models
dc.subject.keywordNon-radial pulsation
dc.subject.keywordnonradial oscillations
dc.subject.keywordGravitational-waves
dc.subject.keywordAnalytic analysis
dc.subject.keywordCompact stars
dc.subject.keywordQuark matter
dc.subject.keywordDense matter
dc.subject.keywordAxial modes
dc.subject.keywordOf-state
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titlePolar quasi-normal modes of neutron stars with equations of state satisfying the 2 M_0 constraint
dc.typejournal article
dc.volume.number89
dcterms.references[1] A. Haensel, P. Potekhin, and D. Yakovlev, Neutron Stars: Equation of State and Structure, Astrophysics and Space Science Library (Springer, New York, 2007). [2] N. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, Astronomy and Astrophysics Library (Springer, New York, 2000). [3] H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000). [4] M. Prakash and J. M. Lattimer, From Nuclei to Stars, edited by S. Lee (World Scientific, Singapore, 2011), Chap. 12, p. 275–304. [5] I. Bednarek, P. Haensel, J. L. Zdunik, M. Bejger, and R. Mánka, Astron. Astrophys. 543, A157 (2012). [6] L. Bonanno and A. Sedrakian, Astron. Astrophys. 539, A16 (2012). [7] S. Weissenborn, D. Chatterjee, and J. Schaffner- Bielich, Phys. Rev. C 85, 065802 (2012). [8] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J. Schaffner-Bielich, Astrophys. J. Lett. 740, L14 (2011). [9] B. Sathyaprakash and B. F. Schutz, Living Rev. Relativity 12, 1 (2009). [10] M. Pitkin, S. Reid, S. Rowan, and J. Hough, Living Rev. Relativity 14, 1 (2011). [11] K. D. Kokkotas and B. Schmidt, Living Rev. Relativity 2, 1 (1999). [12] H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999). [13] L. Rezzolla, Gravitational Waves from Perturbed Black Holes and Relativistic Stars (ICTP, Trieste, 2003). [14] O. Benhar, E. Berti, and V. Ferrari, Mon. Not. R. Astron. Soc. 310, 797 (1999). [15] K. D. Kokkotas, T. A. Apostolatos, and N. Andersson, Mon. Not. R. Astron. Soc. 320, 307 (2001). [16] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70, 124015 (2004). [17] O. Benhar, Mod. Phys. Lett. A 20, 2335 (2005). [18] V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945 (2008). [19] D. Chatterjee and D. Bandyopadhyay, Phys. Rev. D 80, 023011 (2009). [20] D.-H. Wen, B.-A. Li, and P. G. Krastev, Phys. Rev. C 80, 025801 (2009). [21] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957). [22] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970). [23] K. Thorne and A. Campolattaro, Astrophys. J. 149, 591 (1967). [24] R. Price and K. Thorne, Astrophys. J. 155, 163 (1969). [25] K. Thorne, Astrophys. J. 158, 1 (1969). [26] K. Thorne, Astrophys. J. 158, 997 (1969). [27] A. Campolattaro and K. Thorne, Astrophys. J. 159, 847 (1970). [28] L. Lindblom and S. Detweiler, Astrophys. J. Suppl. Ser. 53, 73 (1983). [29] S. Detweiler and L. Lindblom, Astrophys. J. 292, 12 (1985). [30] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. A 432, 247 (1991). [31] S. Chandrasekhar, V. Ferrari, and R. Winston, Proc. R. Soc. A 434, 635 (1991). [32] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. A 434, 449 (1991). [33] J. R. Ipser and R. H. Price, Phys. Rev. D 43, 1768 (1991). [34] Y. Kojima, Phys. Rev. D 46, 4289 (1992). [35] J. L. Blázquez-Salcedo, L. M. González-Romero, and F. Navarro-Le´rida, Phys. Rev. D 87, 104042 (2013). [36] K. D. Kokkotas and B. F. Schutz, Mon. Not. R. Astron. Soc. 255, 119 (1992). [37] N. Andersson, K. D. Kokkotas, and B. F. Schutz, Mon. Not. R. Astron. Soc. 274, 9 (1995). [38] K. D. Kokkotas, Mon. Not. R. Astron. Soc. 268, 1015 (1994). [39] L. Samuelsson, N. Andersson, and A. Maniopoulou, Classical Quantum Gravity 24, 4147 (2007). [40] N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134 (1996). [41] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998). [42] O. Benhar, V. Ferrari, L. Gualtieri, and S. Marassi, Gen. Relativ. Gravit. 39, 1323 (2007). [43] N. Andersson, Proc. R. Soc. A 439, 47 (1992). [44] J. Aguilar and J. Combes, Commun. Math. Phys. 22, 269 (1971). [45] E. Balslev and J. Combes, Commun. Math. Phys. 22, 280 (1971). [46] B. Simon, Commun. Math. Phys. 27, 1 (1972). [47] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, Phys. Rev. D 79, 124032 (2009). [48] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001). [49] F. Fritsch and R. Carlson, SIAM J. Numer. Anal. 17, 238 (1980). [50] U. Ascher, J. Christiansen, and R. D. Russell, Math. Comput. 33, 659 (1979). [51] C. Misner, K. Thorne, and J. Wheeler, Gravitation, Physics Series (Freeman, San Francisco, 1973). [52] Y. Kojima, N. Andersson, and K. D. Kokkotas, Proc. R. Soc. A 451, 341 (1995). [53] N. Glendenning, Astrophys. J.293, 470 (1985). [54] B. D. Lackey, M. Nayyar, and B. J. Owen, Phys. Rev. D 73, 024021 (2006). [55] M. Alford, M. Braby, M. Paris, and S. Reddy, Astrophys. J. 629, 969 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication2a6d99a8-5cf7-4359-b1e1-b96adfb2fb3f
relation.isAuthorOfPublication7b2418bd-138f-46a9-942a-85df3f006089
relation.isAuthorOfPublication48bd59fc-6ed5-48f0-a1f9-031606622729
relation.isAuthorOfPublication.latestForDiscovery2a6d99a8-5cf7-4359-b1e1-b96adfb2fb3f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezromero01libre.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

Collections