Mobile Applications for People with Parkinson's Disease: A Systematic Search in App Stores and Content Review

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Parkinson’s disease (PD) is the most common age-related neurodegenerative motor disease. People with Parkinson’s have different motor symptoms related to movement, the most common of which are tremor, muscle rigidity and slowness of movement. In addition, there are other problems that are unrelated to motor symptoms, such as sleep behavior disorders, personality changes, pain and depression. Numerous apps designed for people with this disease have been developed in recent years. Due to the diversity of symptoms, there are very many different apps. Our goal is to carry out a systematic review of available apps related to PD for the operating systems iOS and Android and to assess their features. In addition, we are interested in the usability of the apps. A search for the representative terms “Parkinson” and “Parkinson’s Disease”, together with the descriptors of the symptoms, was conducted in the Google Play and Apple App stores. Next, we screened the PD-related apps. Finally, we assessed the apps with respect to symptoms, users, purpose and features. In addition, a usability evaluation was carried out.
Martín, S.E., Cambronero, M., García-Ruiz, Y., & Llana, L. (2019). Mobile Applications for People with Parkinson's Disease: A Systematic Search in App Stores and Content Review. J. Univers. Comput. Sci., 25, 740-763.
[Agim and Cannon, 2015] Agim, Z. S. and Cannon, J. R. (2015). Dietary factors inthe etiology of parkinson’s disease. BioMed research international, 2015:16 pages. [Anderson et al., 1997] Anderson, J. M., Hughes, J. D., GonzalezRothi, L., and Heilman, K. M. (1997). Developmental stuttering aggravated by l-dopa treatment in a patient with parkinson’s disease. Neurology, 48(3):2018–2018. [Antao et al., 2013] Antao, Dandan, T., and Chen, C. X. (2013). Training reveals the sources of stroop and flanker interference effects. PLoS ONE, 8(10):1–8. [Arnhold et al., 2014] Arnhold, M., Quade, M., and Kirch, W. (2014). Mobile applications for diabetics: a systematic review and expert-based usability evaluation considering the special requirements of diabetes patients age 50 years or older. Journal of medical Internet research, 16(4):e104–e104. [Asociación Parkinson Madrid, 2018] Asociación Parkinson Madrid (2018). Accessed:2018-06-18. Archived by WebCite® at 2018. [Axelrod et al., 2014] Axelrod, B. N., Meyers, J. E., and Davis, J. J. (2014). Finger tapping test performance as a measure of performance validity. The Clinical Neuropsychologist, 28(5):876–888. [Bronstein et al., 2011] Bronstein, J. M., Tagliati, M., Alterman, R. L., Lozano, A. M., Volkmann, J., Stefani, A., Horak, F. B., Okun, M. S., Foote, K. D., Krack, P., Pahwa, R., Henderson, J. M., Hariz, M. I., Bakay, R. A., Rezai, A., Marks, W. J., J., Moro, E., Vitek, J. L., Weaver, F. M., Gross, R. E., and DeLong, M. R. (2011). Deep brain stimulation for parkinson disease: an expert consensus and review of key issues. Archives of neurology, 68(2):165–165. [Chesters et al., 2015] Chesters, J., Baghai-Ravary, L., and Möttönen, R. (2015). The effects of delayed auditory and visual feedback on speech production. The Journal of the Acoustical Society of America, 137(2):873–883. [Cohen et al., 2016] Cohen, S., Bataille, L. R., and Martig, A. K. (2016). Enabling breakthroughs in parkinson’s disease with wearable technologies and big data analytics. mHealth, 2(5). [Dirnberger and Jahanshahi, 2013] Dirnberger, G. and Jahanshahi, M. (2013). Executive dysfunction in parkinson’s disease: A review. Journal of neuropsychology, 7(2):193–224. [Ellis et al., 2015] Ellis, R. J., Ng, Y. S., Zhu, S., Tan, D. M., Anderson, B., Schlaug, G., and Wang, Y. (2015). A validated smartphone-based assessment of gait and gait variability in parkinson’s disease. PLOS ONE, 10(10):1–22. [Enzensberger et al., 1997] Enzensberger, W., Oberländer, U., and Stecker, K. (1997). Metronome therapy in patients with parkinson disease. Der Nervenarzt, 68(12):972–977. [Ferrari et al., 2016] Ferrari, A., Ginis, P., Hardegger, M., Casamassima, F., Rocchi, L., and Chiari, L. (2016). A mobile kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7):764–773. [Fraiwan et al., 2016] Fraiwan, L., Khnouf, R., and Mashagbeh, A. R. (2016). Parkinson’s disease hand tremor detection system for mobile application. Journal of Medical Engineering & Technology, 40(3):127–134. [Gao et al., 2017] Gao, C. C., Zhou, L. S., Liu, Z. H., Wang, H. C., and Bowers, B. (2017). Mobile application for diabetes self-management in china: Do they fit for older adults? International Journal of Medical Informatics, 101:68–74. [Ginis et al., 2016] Ginis, P., Nieuwboer, A., Dorfman, M., Ferrari, A., Gazit, E., Canning, C. G., Rocchi, L., Chiari, L., Hausdorff, J. M., and Mirelman, A. (2016). Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with parkinson’s disease: A pilot randomized controlled trial. Parkinsonism & Related Disorders, 22:28–34. [Giunti et al., 2018] Giunti, G., Giunta, D. H., Guisado-Fernandez, E., Bender, J. L., and Fernandez-Luque, L. (2018). A biopsy of breast cancer mobile applications: state of the practice review. International Journal of Medical Informatics, 110:1–9. [Giunti et al., 2017] Giunti, G., Guisado-Fernandez, E., and Caulfield, B. (2017). Connected health in multiple sclerosis: A mobile applications review. 2017 Ieee 30th International Symposium on Computer-Based Medical Systems (Cbms), pages 660–665. [Goldman et al., 2018] Goldman, J. G., Vernaleo, B. A., Camicioli, R., Dahodwala, N., Dobkin, R. D., Ellis, T., Galvin, J. E., Marras, C., Edwards, J., and Fields, J. (2018). Cognitive impairment in parkinson’s disease: a report from a multidisciplinary symposium on unmet needs and future directions to maintain cognitive health. npj Parkinson’s Disease, 4(1):19. [Google Play Scraper, 2018] Google Play Scraper (2018). Google play scraper. node.js scraper to get data from google play. Accessed: 2018-04-10. Archived by WebCite® at [Hsieh et al., 2008] Hsieh, Y.-H., Chen, K.-J., Wang, C.-C., and Lai, C.-L. (2008). Cognitive and motor components of response speed in the stroop test in parkinson’s disease patients. The Kaohsiung Journal of Medical Sciences, 24(4):197–203. [Hwang et al., 2013] Hwang, W., Hwang, S., Lee, K., and Chung, Y. (2013). Relationships between upper extremity performance and unified parkinson’s disease rating scale-motor exam. Physical Therapy Rehabilitation Science, 2. [Intel, 2018] Intel (2018). Intel corporation. Accessed: 2018- 04-10. Archived by WebCite® at [Itunes, 2018] Itunes (2018). iTunes Search API. [Jahromi and Ahmadian, 2018] Jahromi, M. E. and Ahmadian, L. (2018). Evaluating satisfaction of patients with stutter regarding the tele-speech therapy method and infrastructure. International Journal of Medical Informatics, 115:128–133. [Jankovic, 2008] Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79(4):368–376. [Kalbe et al., 2016] Kalbe, E., Rehberg, S. P., Heber, I., Kronenbuerger, M., Schulz, J. B., Storch, A., Linse, K., Schneider, C., Gräber, S., Liepelt-Scarfone, I., Berg, D., Dams, J., Balzer-Geldsetzer, M., Hilker, R., Oberschmidt, C., Witt, K., Schmidt, N., Mollenhauer, B., Trenkwalder, C., Spottke, A., Roeske, S., Wittchen, H.-U., Riedel, O., and Dodel, R. (2016). Subtypes of mild cognitive impairment in patients with parkinson’s disease: evidence from the landscape study. Journal of Neurology, Neurosurgery & Psychiatry. [Kostikis et al., 2014] Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M., and Kotsavasiloglou, C. (2014). Smartphone-based evaluation of parkinsonian hand tremor: Quantitative measurements vs clinical assessment scores. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 906–909. [Lee et al., 2012] Lee, S. J., Yoo, J. Y., Ryu, J. S., Park, H. K., and Chung, S. J. (2012). The effects of visual and auditory cues on freezing of gait in patients with parkinson disease. American Journal of Physical Medicine & Rehabilitation, 91(1):2–11. [Leszcz, 2012] Leszcz, T. M. (2012). The effect of multitalker background noise on speech intelligibility in Parkinson’s disease and controls. Thesis, University of Western Ontario. [Lim et al., 2005] Lim, I., van Wegen, E., de Goede, C., Deutekom, M., Nieuwboer, A., Willems, A., Jones, D., Rochester, L., and Kwakkel, G. (2005). Effects of external rhythmical cueing on gait in patients with parkinson’s disease: a systematic review. Clinical rehabilitation, 19(7):695–713. [Lozano and Dreyer, 1978] Lozano, R. A. and Dreyer, D. E. (1978). Some effects of delayed auditory feedback on dyspraxia of speech. Journal of Communication Disorders, 11(5):407–415. [Martinez-Martin et al., 2015] Martinez-Martin, P., Chaudhuri, K. R., Rojo-Abuin, J. M., Rodriguez-Blazquez, C., Alvarez-Sanchez, M., Arakaki, T., Bergareche-Yarza, A., Chade, A., Garretto, N., Gershanik, O., Kurtis, M. M., Martinez-Castrillo, J. C., Mendoza-Rodriguez, A., Moore, H. P., Rodriguez-Violante, M., Singer, C., Tilley, B. C., Huang, J., Stebbins, G. T., and Goetz, C. G. (2015). Assessing the non-motor symptoms of parkinson’s disease: Mds-updrs and nms scale. European Journal of Neurology, 22(1):37–43. [Martínez-Martín et al., 1994] Martínez-Martín, P., Gil-Nagel, A., Gracia, L. M., Gómez, J. B., Martinez-Sarries, J., Bermejo, F., and Group, C. M. (1994). Unified parkinson’s disease rating scale characteristics and structure. Movement disorders, 9(1):76–83. [Mhyre et al., 2012] Mhyre, T. R., Boyd, J. T., Hamill, R. W., and Maguire-Zeiss, K. A. (2012). Parkinson’s Disease, pages 389–455. Springer Netherlands, Dordrecht. [Niazmand et al., 2011] Niazmand, K., Kalaras, A., Dai, H., and Lueth, T. C. (2011). Comparison of methods for tremor frequency analysis for patients with parkinson’s disease. In Ding, Y., Peng, Y., Shi, R., Hao, K., and Wang, L., editors, BMEI, pages 693–697. IEEE. [Norman and Héroux, 2013] Norman, K. and Héroux, M. (2013). Measures of fine motor skills in people with tremor disorders: Appraisal and interpretation. Frontiers in Neurology, 4(50). [Pachoulakis et al., 2015] Pachoulakis, I., Papadopoulos, N., and Spanaki, C. (2015). Parkinson’s disease patient rehabilitation using gaming platforms: lessons learnt. CoRR, abs/1511.02589. [Pahwa and Kelly, 2013] Pahwa, R. and Kelly, E. L. (2013). Handbook of Parkinson’s Disease, Fifth Edition. Taylor & Francis. [Palmerini et al., 2011] Palmerini, L., Mellone, S., Rocchi, L., and Chiari, L. (2011). Dimensionality reduction for the quantitative evaluation of a smartphone-based timed up and go test. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 7179–7182. [Pan et al., 2015] Pan, D., Dhall, R., Lieberman, A., and Petitti, B. D. (2015). A mobile cloud-based parkinson’s disease assessment system for home-based monitoring. JMIR mHealth uHealth, 3(1):e29–e29. [Paolo et al., 1996] Paolo, A. M., Tröster, A. I., Blackwell, K. T., Koller, W. C., and Axelrod, B. N. (1996). Utility of a wisconsin card sorting test short form in persons with alzheimer’s and parkinson’s disease. Journal of clinical and experimental neuropsychology, 18(6):892–897. [Parkinson’s Foundation, 2018] Parkinson’s Foundation (2018). Accessed: 2018-06-5. Archived by WebCite® at 2018; Available from: [Prashanth and Roy, 2018] Prashanth, R. and Roy, S. D. (2018). Early detection of parkinson’s disease through patient questionnaire and predictive modelling. International Journal of Medical Informatics, 119:75–87. [Printy et al., 2014] Printy, B. P., Renken, L. M., Herrmann, J. P., Lee, I., Johnson, B., Knight, E., Varga, G., and Whitmer, D. (2014). Smartphone application for classification of motor impairment severity in parkinson’s disease. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 2686–2689. [Rabinowitz and Lavner, 2014] Rabinowitz, I. and Lavner, Y. (2014). Association between finger tapping, attention, memory, and cognitive diagnosis in elderly patients. Perceptual and motor skills, 119(1):259–278. [Rafal et al., 1987] Rafal, R. D., Inhoff, A. W., Friedman, J. H., and Bernstein, E. (1987). Programming and execution of sequential movements in parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 50(10):1267–1273. [Rey et al., 2017] Rey, M. L.-d., Vela-Desojo, L., and la Cuerda, R. C.-d. (2017). Mobile phone applications in parkinson’s disease: A systematic review. Neurologia. [Sadikov et al., 2015] Sadikov, A., Zabkar, J., Mozina, M., Groznik, V., Nyholm, D., and Memedi, M. (2015). Feasibility of spirography features for objective assessment of motor symptoms in parkinson’s disease. In Holmes, J. H., Bellazzi, R., Sacchi, L., and Peek, N., editors, Artificial Intelligence in Medicine - 15th Conference on Artificial Intelligence in Medicine, AIME 2015, Pavia, Italy, June 17-20, 2015. Proceedings, volume 9105, pages 267–276. Springer. [Sathya and Victor, 2015] Sathya, M. A. J. and Victor, S. P. (2015). Types and tools available for fluency disorder–speech therapy. International Journal Of Engineering And Computer Science, 4(06). [Takač et al., 2013] Takač, B., Català, A., Rodríguez Martín, D., van der Aa, N., Chen, W., and Rauterberg, M. (2013). Position and orientation tracking in a ubiquitous monitoring system for parkinson disease patients with freezing of gait symptom. JMIR Mhealth Uhealth, 1(2):e14–e14. [Thaut et al., 1996] Thaut, M. H., McIntosh, G. C., Rice, R. R., Miller, R. A., Rathbun, J., and Brault, J. M. (1996). Rhythmic auditory stimulation in gait training for parkinson’s disease patients. Movement disorders, 11(2):193–200. [The Michael J. Fox Foundation, 2018] The Michael J. Fox Foundation (2018). The Michael J. Fox Foundation. Archived by WebCite at http://www.webcitation. org/6yZmsMeI8. 2018. [U.S. National Library of Medicine, 2017] U.S. National Library of Medicine (2017). Accessed: 2018-04-10. Archived by WebCite® at 6yb1ZdnRR. [van der Kolk et al., 2015] van der Kolk, N. M., Overeem, S., de Vries, N. M., Kessels, R. P. C., Donders, R., Brouwer, M., Berg, D., Post, B., and Bloem, B. R. (2015). Design of the park-in-shape study: a phase ii double blind randomized controlled trial evaluating the effects of exercise on motor and non-motor symptoms in parkinson’s disease. BMC Neurology, 15(1):56–56. [van der Lee et al., 2001] van der Lee, J. H., de Groot, V., Beckerman, H., Wagenaar, R. C., Lankhorst, G. J., and Bouter, L. M. (2001). The intra- and interrater reliability of the action research arm test: A practical test of upper extremity function in patients with stroke. Archives of Physical Medicine and Rehabilitation, 82(1):14–19. [Wagner and Ganz, 2012] Wagner, R. and Ganz, A. (2012). Pagas: Portable and accurate gait analysis system. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 280–283. [Yates, 1963] Yates, A. J. (1963). Delayed auditory feedback. Psychological bulletin, 60(3):213–213. [Yokoe et al., 2009] Yokoe, M., Okuno, R., Hamasaki, T., Kurachi, Y., Akazawa, K., and Sakoda, S. (2009). Opening velocity, a novel parameter, for finger tapping test in patients with parkinson’s disease. Parkinsonism and related disorders, 15(6):440–444. [Zampieri et al., 2009] Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., and Horak, F. B. (2009). An instrumented timed up and go test characterizes gait and postural transitions in untreated parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry.