The real plank problem and some applications.
Loading...
Download
Full text at PDC
Publication date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
K. Ball has proved the "complex plank problem": if (x(k))(k=1)(n) is a sequence of norm I vectors in a complex Hilbert space (H, (., .)), then there exists a unit vector x for which |< x,x(k)>| >= 1/root n, k = 1,...,n. In general, this result is not true on real Hilbert spaces. However, in special cases we prove that the same result holds true. In general, for some unit vector x we have derived the estimate |< x,x(k)>| >= max{root lambda(1)/n, 1/root lambda(n)n}, where lambda(1) is the smallest and lambda(n) is the largest eigenvalue of the Hermitian matrix A = [(x(j), x(k))], j, k = 1,...,n. We have also improved known estimates for the norms of homogeneous polynomials which are products of linear forms on real Hilbert spaces.